MATRIX COFACTOR

417 Ansichten (letzte 30 Tage)
Mariana
Mariana am 2 Feb. 2012
Kommentiert: Walter Roberson am 11 Okt. 2021
I need to know a function to calculate the cofactor of a matrix, thank a lot!
  7 Kommentare
Natasha St Hilaire
Natasha St Hilaire am 7 Okt. 2021
What is "menor" short for?
Walter Roberson
Walter Roberson am 8 Okt. 2021
I suspect that the English word would be "minor". The Spanish word "menor" can be translated as English "minor" in some situations.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 2 Feb. 2012
  10 Kommentare
Mariana
Mariana am 7 Feb. 2012
Yes, I right-click on the shortcut and select to run as administrator. And I save the function on the lib file, and the function work with matrix.. But when I close and open again the function when I try to use the function a message say that it is Undefined..
Mariana
Mariana am 7 Feb. 2012
Walter,
I thing I get it.. I forget to add the function to the PATH through the SET PATH in the menu file.. Thank you very much for all..
Just one question more.. Matlab run in linux? what distribution is better?

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Dr. Murtaza Ali Khan
Dr. Murtaza Ali Khan am 28 Sep. 2019
A = [
2 4 1
4 3 7
2 1 3
]
detA = det(A)
invA = inv(A)
cofactorA = transpose(detA*invA)
  2 Kommentare
Franco Salcedo Lópezz
Franco Salcedo Lópezz am 14 Nov. 2019
Bearbeitet: Franco Salcedo Lópezz am 14 Nov. 2019
Here I leave this code, I hope it helps. Regards
function v = adj(M,i,j)
t=length(M);
v=zeros(t-1,t-1);
ii=1;
ban=0;
for k=1:t
jj=1;
for m=1:t
if ( (i~=k)&&(j~=m) )
v(ii,jj)=M(k,m);
jj++;
ban=1;
endif
endfor
if(ban==1)ii++;ban=0;endif
endfor
Walter Roberson
Walter Roberson am 11 Okt. 2021
This is not MATLAB code. It might be Octave.

Melden Sie sich an, um zu kommentieren.


Francisco Trigo
Francisco Trigo am 6 Feb. 2020
The matrix confactor of a given matrix A can be calculated as det(A)*inv(A), but also as the adjoint(A). And this strange, because in most texts the adjoint of a matrix and the cofactor of that matrix are tranposed to each other. But in MATLAB are equal. I found a bit strange the MATLAB definition of the adjoint of a matrix.
  1 Kommentar
Zuhri Zuhri
Zuhri Zuhri am 28 Sep. 2021
adjoint matrix is ​​the transpose of the cofactor matrix so the above result is correct

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by