MATRIX COFACTOR
417 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mariana
am 2 Feb. 2012
Kommentiert: Walter Roberson
am 11 Okt. 2021
I need to know a function to calculate the cofactor of a matrix, thank a lot!
7 Kommentare
Walter Roberson
am 8 Okt. 2021
I suspect that the English word would be "minor". The Spanish word "menor" can be translated as English "minor" in some situations.
Akzeptierte Antwort
Weitere Antworten (2)
Dr. Murtaza Ali Khan
am 28 Sep. 2019
A = [
2 4 1
4 3 7
2 1 3
]
detA = det(A)
invA = inv(A)
cofactorA = transpose(detA*invA)
2 Kommentare
Franco Salcedo Lópezz
am 14 Nov. 2019
Bearbeitet: Franco Salcedo Lópezz
am 14 Nov. 2019
Here I leave this code, I hope it helps. Regards
function v = adj(M,i,j)
t=length(M);
v=zeros(t-1,t-1);
ii=1;
ban=0;
for k=1:t
jj=1;
for m=1:t
if ( (i~=k)&&(j~=m) )
v(ii,jj)=M(k,m);
jj++;
ban=1;
endif
endfor
if(ban==1)ii++;ban=0;endif
endfor
Francisco Trigo
am 6 Feb. 2020
The matrix confactor of a given matrix A can be calculated as det(A)*inv(A), but also as the adjoint(A). And this strange, because in most texts the adjoint of a matrix and the cofactor of that matrix are tranposed to each other. But in MATLAB are equal. I found a bit strange the MATLAB definition of the adjoint of a matrix.
1 Kommentar
Zuhri Zuhri
am 28 Sep. 2021
adjoint matrix is the transpose of the cofactor matrix so the above result is correct
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!