GA-Neural Network Hybridization

1 Ansicht (letzte 30 Tage)
Abul Fujail
Abul Fujail am 1 Feb. 2012
Kommentiert: Greg Heath am 30 Jan. 2017
How GA can be hybridized with Neural network (with reference to Matlab).
  3 Kommentare
Abul Fujail
Abul Fujail am 4 Apr. 2012
in='input_train.tra';
p=load(in);
p=transpose(p);
net=newff([.1 .9;.1 .9;.1 .9;.1 .9],[7,1], {'logsig','logsig'},'trainlm');
net=init(net);
tr='target_train.tra';
x=load(tr);
x=transpose(x);
net.trainParam.epochs=600;
net.trainParam.show=10;
net.trainParam.lr=0.3;
net.trainParam.mc=0.6;
net.trainParam.goal=0;
[net,tr]=train(net,p,x);
y=sim(net,p);
Some codes are shown above... i have 4 input vector and 1 target vector... i want to get the optimum weight with GA so that the mean square error between target and neural network predicted result is minimum. Please suggest me how the GA can be added with this neural network code..
thomas lass
thomas lass am 24 Dez. 2016
I need the full codes of GA can be hybridized with Neural network

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Greg Heath
Greg Heath am 3 Feb. 2012
I don't see how they can be combined to an advantage.
Just write the I/O relationship for the net in terms of input, weights and output: y = f(W,x). Then use the Global Optimization toolox to minimize the mean square error MSE = mean(e(:).^2) where e is the training error, e = (t-y) and t is the training goal.
Hope this helps.
Greg
  3 Kommentare
Shipra Kumar
Shipra Kumar am 30 Jan. 2017
Bearbeitet: Shipra Kumar am 30 Jan. 2017
greg how can u write y as a function. i am having similar difficulty while implementing ga-nn. would be glad if u could help
Greg Heath
Greg Heath am 30 Jan. 2017
y = B2+ LW*tansig( B1 + IW *x);

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by