Central difference approximations to estimate a Jacobian matrxi
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have two functions F(x,y) and G(x,y) defined in script files FM.m and GM.m and I need to use central difference approximations to estimate the Jacobian matrix J=[Fx(1,2) Fy(1,2);Gx(1,2) Gy(1,2)] where Fx,Fy,Gx,Gy denotes partial differentiation variable.
The central difference approximation is f'(x)=(f(x+h)-f(x-h))/2h.
Any help would be really appreciated, thanks!
0 Kommentare
Antworten (1)
Torsten
am 17 Mär. 2016
J(1,1)=(F(x+h,y)-F(x-h,y))/(2*h);
J(1,2)=(F(x,y+k)-F(x,y-k))/(2*k);
J(2,1)=(G(x+h,y)-G(x-h,y))/(2*h);
J(2,2)=(G(x,y+k)-G(x,y-k))/(2*k);
Best wishes
Torsten.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Model Identification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!