Second Order, Piecewise ODE help
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I'm very new to MatLab and need to solve a second order ODE that equals a piecewise function. I've looked up how to solve a second order ODE with ode45 and how to solve a piecewise ODE, but I'm not sure how to combine them. Further, the IVP I need to solve does not have a y' value and I do not know how to deal with that.
The IVP is:
y'' + 4y = g(t), y(0)=y'(0)=0
where: g(t) = 0 in 0<=t<5; (t-5)/5 for 5<=t<10; 1 for t>=10
Thanks in advance, Logan
0 Kommentare
Akzeptierte Antwort
Torsten
am 14 Mär. 2016
fun=@(t,y)[y(2);-4*y(1)];
y0=[0 0];
tspan=[0 5];
[T1,Y1]=ode45(fun,tspan,y0);
fun=@(t,y)[y(2);-4*y(1)+(t-5)/5;
y0=[Y1(end,1) Y1(end,2)];
tspan=[T1(end) 10];
[T2,Y2]=ode45(fun,tspan,y0);
fun=@(t,y)[y(2);-4*y(1)+1];
y0=[Y2(end,1) Y2(end,2)];
tspan=[T2(end) 20];
[T3,Y3]=ode45(fun,tspan,y0);
Now put T1, T2, T3 and Y1, Y2, Y3 together to get the result of your ODE on [0 20].
Best wishes
Torsten.
Weitere Antworten (1)
Torsten
am 16 Mär. 2016
Does this work ?
T=vertcat(T1(1:end),T2(2:end),T3(2:end));
Y=vertcat(Y1(1:end,1),Y2(2:end,1),Y3(2:end,1));
plot(T,Y:,1))
Best wishes
Torsten.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!