Determining periods using Continuous Wavelet Transform
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, I have a signal which contains some quasi-periodic patterns which I would like to determine.
As its spectral content changes with time, I think that Wavelet analysis is the method which best fits to my purpose. So that, I was wondering if there exists a canonical way to detect reasonable periods in this signal by looking to CWT coefficients.
0 Kommentare
Akzeptierte Antwort
Wayne King
am 28 Jan. 2012
Hi Richard, you can use the approximate relationship between scale and frequency to do this.
Create a signal to illustrate this:
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = zeros(size(t));
x([625,750]) = 2.5;
x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+0.15*randn(size(t));
plot(t,x);
Set up the scale vector and spacing:
ds = 0.15;
J = fix((1/ds)*log2(length(x)/8));
dt = 1/Fs;
scales = 2*dt*2.^((0:J).*ds);
Obtain the CWT and plot the response:
cwtstruct = cwtft({x,0.001},'Scales',scales,'Wavelet','morl');
periods = cwtstruct.scales.*(4*pi)/(6+sqrt(38));
freq = 1./periods;
cfs = cwtstruct.cfs;
contour(t,freq,abs(cfs));
set(gca,'xtick',[0 0.25 0.4 0.5 0.6 0.75 1]); grid on;
xlabel('Time (seconds)'); ylabel('Hz');
0 Kommentare
Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Continuous Wavelet Transforms finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!