- Use 'fft' to transform both the convolved signal and the convolution kernel to the frequency domain
- Divide the FFT of the convolved signal by the FFT of the convolution kernel.
- Transform the result back to the time domain using the inverse FFT 'ifft'.
deconvolution problem
26 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
hello! i made a circular convolution each line of a data matrix(80,2048)with a h(1,2048).till here every good.
c=[]; for i = 1:size(ofdmsignal,1);
c=[c cconv(h,ofdmsignal(i,:),length(h))]; i; end
h=(1,2048) complex numbers ofdmsignal=(80,2048) complex numbers
how i can make dconvolution to take my original signal(ofdm signal)?????
i'll be very thankfull!!!!!!
0 Kommentare
Antworten (1)
nick
am 16 Apr. 2025
Hello jordi,
To perform deconvolution and retrieve the OFDM signal from the circularly convolved signal, you can follow these steps:
% Example signals
h = randn(1, 2048) + 1i * randn(1, 2048);
ofdmsignal = randn(80, 2048) + 1i * randn(80, 2048);
c = [];
for i = 1:size(ofdmsignal, 1)
c = [c; cconv(h, ofdmsignal(i, :), length(h))]; % Perform circular convolution
end
%% Deconvolution
h_fft = fft(h); % FFT of the convolution kernel
deconvolved_signal = zeros(size(ofdmsignal));
for i = 1:size(c, 1)
% FFT of the convolved signal
convolved_fft = fft(c(i, :));
deconv_fft = convolved_fft ./ h_fft;
deconvolved_signal(i, :) = ifft(deconv_fft);
end
row_index = 1;
original_signal = ofdmsignal(row_index, :);
retrieved_signal = deconvolved_signal(row_index, :);
fprintf('Original Signal (first 5 elements):\n');
disp(original_signal(1:5));
fprintf('Retrieved Signal (first 5 elements):\n');
disp(retrieved_signal(1:5));
figure;
subplot(2, 1, 1);
plot(abs(original_signal));
title('Original Signal Magnitude');
xlabel('Sample Index');
ylabel('Magnitude');
subplot(2, 1, 2);
plot(abs(retrieved_signal));
title('Retrieved Signal Magnitude');
xlabel('Sample Index');
ylabel('Magnitude');
Kindly refer to the documentation by executing the following command in MATLAB Command Window to know more about 'fft' and 'ifft' functions:
doc fft
doc ifft
0 Kommentare
Siehe auch
Kategorien
Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!