Neural Network result offset by one
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
M. A. Hopcroft
am 11 Feb. 2016
Kommentiert: M. A. Hopcroft
am 17 Feb. 2016
I am learning the Neural Networks toolbox and I worked through a simple example using narxnet to predict the output of a sine function:
proffset = 5; % target offset to train for prediction
tdelay = 2; % length of delay line
x = [1:tstep:15]; % create the example function
y = 2*sin(x)+1; % y = f(x(t)), x(t)=t
xo = x(1:end-proffset); % training inputs, x(t)
yo = y(proffset+1:end); % training targets, y(t-T)
net = narxnet(1:tdelay,1:tdelay,10); % default values
[Xs,Xi,Ai,Ts,Ew,tshift] = preparets(net,num2cell(xo),{},num2cell(yo));
net = train(net,Xs,Ts,Xi,Ai);
[yn, xn, an] = net(Xs,Xi,Ai);
plot(xo(tdelay+1:end),cell2mat(yn),'o-g');
This works fine. The outputs match the targets very closely, as expected for a simple function.
However, when I use my real data in this code framework, the output results are clearly shifted by -1, even though the number of outputs is correct (i.e., number of outputs = number of targets - length of delay line).
The example seems very straightforward, and I can't figure out why "real" data would produce this kind of behavior. What can cause this kind of offset? Thank you!
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 13 Feb. 2016
Bearbeitet: Greg Heath
am 13 Feb. 2016
1. Since I always use
a. t and y to denote target and output
b. subscripts "o" and "c" to denote "o"penloop
and "c"loseloop,
I had to change notation to prevent my confusion.
2. What does the pr in proffset represent?
3. Shouldn't your comment concern training input x(t) and training target y(t+T) (instead of y-T) so that x(1) predicts y(1+T) ? I think this may have caused your confusion.
4. The default 'dividerand' causes interpolation (at (sometimes VERY) nonconstant timesteps). To get a good understanding use the diff function to determine the spacings among the validation and test data for this simple example:
[trnind valind tstind]= dividerand(100,0.7,0.15,0.15);
valspacing = diff(valind)
testspacing = diff(tstind)
Surprised?
5. For unbiased timeseries prediction
testInd = [ Ntrn + Nval + 1: N ]
This can be accomplished in many ways
a. Divideblock: [ Ntrn, Nval, Ntst ] %Includes Nval = 0
b. Divideint,divideind or dividerand on 1:Ntrn+Nval
Obviously, only divideblock provides accurate spacing.
close all, clear all, clc, plt=0, tic
dx = 0.1, x0 = [ 1: dx: 15 ]; t0 = 2*sin( x0 ) + 1;
[ I N0 ] = size(x0), [ O N0 ] = size(t0) % [ 1 141 ]
offset = 5, N = N0 - offset % 136
x = x0(1:end - offset ); t = t0(offset + 1 : end );
X = con2seq(x); T = con2seq(t);
d=2, ID = 1:d, FD = 1:2, H = 10 % NARXNET defaults
neto = narxnet;
% neto.divideFcn = 'divideblock'; % For prediction
[ Xo, Xoi, Aoi, To ] = preparets( neto, X, {}, T );
to=cell2mat(To);varto=var(to,1) % 2.0492 Reference MSE
% Desire MSEo/varto <= 0.005 before closing loop
Ntrials = 12
rng('default')
for i =1:Ntrials
state(i) = rng;
neto = configure(neto, Xo, To);
[neto tro Yo Eo Xof Aof]=train(neto,Xo,To,Xoi,Aoi);
% [Yo Xof Aof ] = net(Xo,To,Xoi,Aoi);
% Eo = gsubtract(To,Yo)
NMSEo(i) = mse(Eo)/varto;
end
[ minNMSEo imin] = min(NMSEo) % [ 1.8972e-06 8 ]
result = NMSEo
% result = 0.022016 0.0024273 0.0026271 3.2378e-5
% 0.010759 0.15988 0.0074602 1.8972e-6
% 0.000851 0.79191 0.0008976 0.0064785
Hope this helps.
Thank you for formally accepting my answer
Greg
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!