Fix function evaluations in ga
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I want to fix my number of maximum function evaluation as stopping criteria in ga. How can i do it?
2 Kommentare
Geoff Hayes
am 26 Jan. 2016
Sandeep - do you mean that you want the genetic algorithm to iterate for some maximum number of iterations/generations?
Antworten (2)
Brendan Hamm
am 26 Jan. 2016
This is controlled in the Generations property of the Genetic Algorithm options. Obtain the default options:
>> options = gaoptimset(@ga)
options =
PopulationType: 'doubleVector'
PopInitRange: []
PopulationSize: '50 when numberOfVariables <= 5, else 200'
EliteCount: '0.05*PopulationSize'
CrossoverFraction: 0.8000
ParetoFraction: []
MigrationDirection: 'forward'
MigrationInterval: 20
MigrationFraction: 0.2000
Generations: '100*numberOfVariables'
TimeLimit: Inf
FitnessLimit: -Inf
StallGenLimit: 50
StallTest: 'averageChange'
StallTimeLimit: Inf
TolFun: 1.0000e-06
TolCon: 1.0000e-03
InitialPopulation: []
InitialScores: []
NonlinConAlgorithm: 'auglag'
InitialPenalty: 10
PenaltyFactor: 100
PlotInterval: 1
CreationFcn: @gacreationuniform
FitnessScalingFcn: @fitscalingrank
SelectionFcn: @selectionstochunif
CrossoverFcn: @crossoverscattered
MutationFcn: {@mutationgaussian [1] [1]}
DistanceMeasureFcn: []
HybridFcn: []
Display: 'final'
PlotFcns: []
OutputFcns: []
Vectorized: 'off'
UseParallel: 0
Now you can change the Generations and pass this in to the options input of your call to ga
>> options.Generations = '200*numberOfVariables';
>> ga(...,options); % Fill in the ... with your function, constraints, etc.
4 Kommentare
UbuntuXenial
am 28 Mär. 2019
Can you please explain how to determine the dependence? I want to run GA/MOGA only up to certain MaxFunctionEvaluations but this isn't a valid optimoption for these algorithms.
Emily Kambalame
am 26 Aug. 2022
I also dont want to use the max generation but rather the maximum function evaluation as my stopping condition. How should i approach my problem? Take note that my constraints are satified using Epanet simulator and am NSGA 2 to optimise.
Matt J
am 26 Jan. 2016
Bearbeitet: Matt J
am 26 Jan. 2016
The following nested function strategy might be a way to cheat. Basically, it keeps a running count, funEvals, of the number of calls to the fitness function. When funEvals exceeds a specified MaxFunEvals, the FitnessFcn output is forced to -Inf, which I think must trigger the FitnessLimit stopping criterion.
function runEverything(MaxFunEvals)
funEvals=0;
bestFitness=inf;
[x,fval,exitflag,output,population,scores] = ga(@FitnessFcn,...);
fval=bestFitness;
function val = FitnessFcn(x)
...
bestFitness=min(bestFitness,val);
funEvals=funEvals+1; %increment counter
if funEvals>=MaxFunEvals
val=-inf;
end
end
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Genetic Algorithm finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!