Neural Network and Machine learning
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
ANDRES CONSIGLIO
am 20 Jan. 2016
Bearbeitet: Greg Heath
am 22 Jan. 2016
Hello.
I have this code.
net = feedforwardnet(20); net.layers{1}.transferFcn = 'tansig'; net.layers{2}.transferFcn = 'purelin';
net.divideParam.trainRatio=.7; net.divideParam.valRatio=.15; net.divideParam.testRatio=.15; net.trainParam.max_fail = 500; net.trainParam.epochs = 500; net.trainParam.goal = .001;
i=0; fecha = datetime('now'); disp(fecha);
Input = xlsread('Datos',4);
Target = xlsread('Datos',5);
Sample = xlsread('Datos',6);
for n = drange(1:4)
i=i+1;
disp(i);
net=train(net,Input,Target);
[net,tr] = train(net,Input,Target);
end;
Y = net(Sample); Output = net(Target); y = net(Input); plotconfusion(Target,Output); Sample1 = sort(Sample,'descend'); plot(Sample1,'DisplayName','Modelo');hold on;plot(Sample,'DisplayName','Real');figure() [r,m,b] = regression(Output,y); plotregression(Target,Output); perf = perform(net,y,Target);
plotperform(tr); archivo = fopen('C:\Users\Pablo\Desktop\Neurona\Salida.txt','a'); fprintf(archivo,datestr(now, 'dd-mmm-yyyy\r\n')); fprintf(archivo,'%3.0f\r\n',Y); fclose(archivo); fprintf('%3.0f\n',round(Y)); fecha = datetime('now'); disp(fecha);
After traing and use the sim() I get a result, but How can a I make change a target using the same trained neuron ?? or a machine learning. Please some example to see ... Thank.
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 21 Jan. 2016
Bearbeitet: Greg Heath
am 21 Jan. 2016
1. Please format your code
2. Delete the 1st equation
net = train(net,Input,Target);
[net,tr] = train(net,Input,Target);
3.The following is an error.(It doesn't make sense)
Output = net(Target)
Hope this helps.
Thank you for formally accepting my answer
Greg
2 Kommentare
Greg Heath
am 22 Jan. 2016
Bearbeitet: Greg Heath
am 22 Jan. 2016
A different target requires a different design.
The design is only valid for inputs in a restricted space.
For a different input in that space corresponding to a different target,
output = net(input);
If you know the target you can calculate the error.
Hope this helps.
Greg
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!