Cluster-Robust Standard Errors in Maximum Likelihood Estimation
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am estimating a model on pooled panel data by Maximum Likelihood using fminunc. I want to compute the cluster-robust standard errors after the estimation. This is a sandwich estimator, where the "bread" is given by the inverse Hessian and the "meat" involves the contribution of the k-th group to the score vector. I get the Hessian straight out of the fminunc algorithm.
But: How do I use the fminunc output to compute the contribution of the k-th group to the score vector?
Or, how would I alternatively compute the cluster-robust standard errors after minimizing the minus log-Likelihood function?
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!