How does the Box-Cox Transformation in Matlab work?
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Anderson
am 17 Jan. 2016
Bearbeitet: Tushar Athawale
am 19 Jan. 2016
What is the explicitly Log-Likelihood Function (LLF) maximized?
Are the variance and mean values computed from the data?
0 Kommentare
Akzeptierte Antwort
Tushar Athawale
am 19 Jan. 2016
Bearbeitet: Tushar Athawale
am 19 Jan. 2016
Hi,
The log-likelihood function being maximized with respect to parameter λ for the Box-Cox transformation is following:
-(n/2)*log(σ(Y)^2)+(λ-1)*(∑log(y_i)), where Y represents the data transformed using the Box-Cox transformation and n represents the number of data points.
The equations for the Box-Cox transformation can be found in the following link: http://www.mathworks.com/help/finance/boxcox.html
You can also learn more about the implementation of the Box-Cox transformation in MATLAB by studying the code for 'boxcox.m':
>> edit boxcox.m
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!