MATLAB 3D plot on dispersion curve
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am working on wave propagation in multilayer structures. I wrote a code for 2-D plotting dispersion curves at specific frequency (j=1:1 condition) which is presented at the end of the question. My question is that how I can plot those curves at different frequencies (for example, j=1:3) on the same plotting. I think that it should be 3-D plotting and third axes should be frequency. Can anyone give me an idea or source for this condition ?
Thank you,
clc;
clear all;
% System Definition
N=3; %Number of layers including half spaces N:1 top half space N:bottom half space
G=zeros((N-1)*4,(N-1)*4);
%Thickness
th(1)=1000;%mm thickness of the top half space arbitrary meters
th(2)=1E-3;%mm thickness of the layer meters
th(N)=1000;%mm thickness of the layer meters
%th(4)=1E-3;%mm thickness of the layer meters
%th(N)=0;%mm thickness of the bottom half space arbitrary meters
poi=0.3;
coeff=[0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3];
mass_coeff=[0.2 0.3 .4 .5 .6 .7 .8 .9 1 2];
for ii=1:10
for jj=1:11
%Material Props
%Layer 1
rho(1)=1000; %(if vacuum 0)
alfa(1)=1480; %(if vacuum 1000)%m/s longitidunal velocity
beta(1)=1; %(if vacuum 1000)%m/s shear velocity %beta=sqrt(mu/rho) %lame constant def %beta=sqrt((E)/(2*rho*(1+v)))/1000; %E and v definition
%Layer 2
rho(2)=rho(1)*mass_coeff(ii); %(if vacuum 0)
alfa(2)=alfa(1)*coeff(jj); %(if vacuum 1000)%m/s longitidunal velocity
alfa22(jj)=alfa(2);
beta(2)=alfa(2)/(sqrt((1-2*poi)/(2*(1-poi))))^-1; %(if vacuum 1000)%m/s shear velocity %beta=sqrt(mu/rho) %lame constant def %beta=sqrt((E)/(2*rho*(1+v)))/1000; %E and v definition
%Layer 2
rho(3)=rho(1); %(if vacuum 0)
alfa(3)=alfa(1); %(if vacuum 1000)%m/s longitidunal velocity
beta(3)=beta(1); %(if vacuum 1000)%m/s shear velocity %beta=sqrt(mu/rho) %lame constant def %beta=sqrt((E)/(2*rho*(1+v)))/1000; %E and v definition
% %Layer N
% rho(4)=rho(2); %(if vacuum 0)
% alfa(4)=alfa(2); %(if vacuum 1000)%m/s longitidunal velocity
% beta(4)=beta(2); %(if vacuum 1000)%m/s shear velocity %beta=sqrt(mu/rho) %lame constant def %beta=sqrt((E)/(2*rho*(1+v)))/1000; %E and v definition
%
% %Layer N
% rho(5)=rho(1); %(if vacuum 0)
% alfa(5)=alfa(1); %(if vacuum 1000)%m/s longitidunal velocity
% beta(5)=beta(1); %(if vacuum 1000)%m/s shear velocity %beta=sqrt(mu/rho) %lame constant def %beta=sqrt((E)/(2*rho*(1+v)))/1000; %E and v definition
%Velocity Range
Vstop=2000; %Top Vel
Vstart=10; %Bottom Vel
f_step=5E5; %frequency step
for j=1:1
%Function Vstart
f(j)=j*f_step;
w=2*pi*f(j);
for i=1:(Vstop-Vstart);
cp=Vstart+i-1;%km/s
k=w/cp;
for r=1:N
Ca=sqrt(((w^2)/(alfa(r)^2))-k^2);
Cb=sqrt(((w^2)/(beta(r)^2))-k^2);
B=(w^2)-(2*(beta(r)^2)*(k^2));
ga=exp(1i*th(r)*sqrt(((w^2)/(alfa(r)^2))-k^2));
gb=exp(1i*th(r)*sqrt(((w^2)/(beta(r)^2))-k^2));
%Wave vectors
L_plus=[k; Ca; B*1i*rho(r); 2*1i*rho(r)*k*(beta(r)^2)*Ca];
S_plus=[Cb; -k; -2*1i*rho(r)*k*(beta(r)^2)*Cb; B*1i*rho(r)];
L_minus=[k; -Ca; B*1i*rho(r); -2*1i*rho(r)*k*(beta(r)^2)*Ca];
S_minus=[-Cb; -k; 2*1i*rho(r)*k*(beta(r)^2)*Cb; B*1i*rho(r)];
a=-mod(r,2)*2+1;
if (r==1)
G(1:4,1:2)=[-L_minus -S_minus];
elseif (r==N)
G((N-1)*4-3:(N-1)*4,(N-1)*4-1:(N-1)*4)=[a*L_plus a*S_plus];
else
G((r-1)*4-3:(r-1)*4,(r-1)*4-1:(r-1)*4+2)=[a*L_plus a*S_plus a*L_minus a*S_minus];
G((r-1)*4+1:(r-1)*4+4,(r-1)*4-1:(r-1)*4+2)=[(a*ga)*L_plus (a*gb)*S_plus (a/ga)*L_minus (a/gb)*S_minus];
end
end
Deter_G_mag(i)=abs(det(G));
end
v_range=Vstart:(Vstop-1);
M(j,:)=Deter_G_mag;
n=1;
for m=2:(Vstop-Vstart-1)
if (m==2)
der_det(m,j)=(Deter_G_mag(m+1)-Deter_G_mag(1));
else if (m==(Vstop-Vstart-1))
der_det(m,j)=(Deter_G_mag(Vstop-Vstart-1)-Deter_G_mag(m-1));
else
der_det(m,j)=(Deter_G_mag(m+1)-Deter_G_mag(m-1));
end
end
if (sign(der_det(m-1,j))==-1 && sign(der_det(m,j))==1 && abs(v_range(m)-alfa(2))>1 && abs(v_range(m)-alfa(1))>1 && abs(v_range(m)-alfa(3))>1 && abs(v_range(m)-beta(1))>1 && abs(v_range(m)-beta(2))>1 && abs(v_range(m)-beta(3))>1);
V_p(n,j)=v_range(m);
n=n+1;
end
end
end
Vpp(jj)=V_p(1,1);
end
ratio=Vpp./alfa22;
hold on
plot(coeff,ratio,'*');
end
1 Kommentar
Ghanem Alatteili
am 6 Jul. 2022
Hi,
I am working something similar. I am trying to plot a dispersion relation by computiong dipole intaeraction matrix. Then I will insert the translation vectors to get the dipersion relation. I would like to know how do you define your k as a number or a function. I might help.
Thank you,
Antworten (1)
MANYINGA MARC
am 12 Apr. 2023
Hi everyone i can bring you some solution about your problem. My code is base of Stiffness matrix method of Rokhlin and Wang. Here i try to calculate reflexion and transmission coefficient for a multilayer a a function of frequency/incudent angle. My code didn't give me a result what i expected but it can help you for your Problem. And you can also help me to improve it
if true % code end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Contour Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!