Fit Underdamped oscillator to data
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have been trying to fit a under-damped oscillator equation to some data that I have. I have tried most of the online examples I can find with little success. My data can be visualized below and I have attached a file with the raw data as well.
0 Kommentare
Antworten (1)
Star Strider
am 2 Dez. 2015
This is not perfect but the best I can do:
D = load('matheu Broom rate0.2.mat');
t = D.t;
x = D.x;
[xu,ixu] = max(x);
[xl,ixl] = min(x);
xr = (xu-xl); % Range of ‘x’
xm = mean(x); % Estimate d-c offset
xz = x - xm; % Subtract d-c Offset
zt = t(xz .* circshift(xz,[-1 0]) <= 0); % Find zero-crossings
per = 2*mean(diff(zt)); % Estimate period
objfcn = @(b,x) b(1).*exp(b(2).*x).*(sin(2*pi*x./b(3) + 2*pi/b(4))) + b(5); % Function to fit
ssecf = @(b) sum((objfcn(b,t) - x).^2); % Sum-Of-Squares cost function
init_est = [xr; -0.01; per; t(ixl)/per; xm]; % Initial Parameter Estimates
[s,sse] = fminsearch(ssecf, init_est) % Minimise Sum-Of-Squares
tp = linspace(min(t),max(t), 250);
figure(1)
plot(t,x,'b', tp,objfcn(s,tp), 'r')
grid
axis([xlim 0.3 0.7])
text(0.006, 0.62, sprintf('x(t) = %.3f\\cdote^{%.3f\\cdott}\\cdotsin(2\\pit\\cdot%.3f + %.3f) + %.3f', s(1:2), 1/s(3), 2*pi/s(4), s(5)))
2 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!