Solving system ODEs with one unknown variable coefficient.
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi all, I am trying to solve this system of ODEs: $$ S'(a)= {\tau}R(a)-\lambda(a)S(a)\\ I'(a)=\lambda(a)S(a)-{\gamma}I(a)+rL(a)\\ R'(a)=(1-q)\gammaI(a)-{\tau}R(a)\\ L'(a)=q\gammaI(a)-rL(a) $$
I know the value of all the parameters apart from $\lambda$ which is more over a-dependent. I have tried to solve it analitically using this solve but it seems not possible. So I want to tried with a numerical approach but I don't know how to procede because of the presence of this $\lambda(a)$. Do you have any hints-suggestion ?
3 Kommentare
Torsten
am 2 Dez. 2015
Even if an analytical solution existed for your linear ODE system with variable coefficients, it would be so complicated that it does not help for interpretation.
A numerical solution is only possible if you supply an explicit function lambda=lambda(a).
Best wishes
Torsten.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!