NARXNET to predict the time series
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Lilya
am 25 Nov. 2015
Kommentiert: Greg Heath
am 1 Dez. 2015
Hi Neural Network users,
I had written a code to predict the last week of my data set, the result is as shown in the plot below Please let me know where I made a mistake :(
clear;
%%1. Importing data
load ('Metdata.mat'); % Import file
load('Rdate.mat');
Metdata(:,1)=[];
Rdate(:,1)=[];
Inputs = Metdata'; %Convert to row
Target = Rdate'; %Convert to row
X = con2seq(Inputs); %Convert to cell
T = con2seq(Target); %Convert to cell
%%2. Data preparation
N = 168; % Multi-step ahead prediction
% Input and target series are divided in two groups of data:
% 1st group: used to train the network
inputSeries = X(1:end-N);
targetSeries = T(1:end-N);
% 2nd group: this is the new data used for simulation. inputSeriesVal will
% be used for predicting new targets. targetSeriesVal will be used for
% network validation after prediction
inputSeriesVal = X(end-N+1:end);
targetSeriesVal = T(end-N+1:end);
%%3. Network Architecture
delay = 2;
neuronsHiddenLayer = 15;
% Create a Nonlinear Autoregressive Network with External Input
% net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
net = narxnet(1:delay,1:delay,neuronsHiddenLayer);
%%4. Training the network
[Xs,Xi,Ai,Ts] = preparets(net,inputSeries,{},targetSeries);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
% Performance for the series-parallel implementation, only
% one-step-ahead prediction
perf = perform(net,Ts,Y);
%%5. Multi-step ahead prediction
[Xs1,Xio,Aio] = preparets(net,inputSeries(1:end-delay),{},targetSeries(1:end-delay));
[Y1,Xfo,Afo] = net(Xs1,Xio,Aio);
[netc,Xic,Aic] = closeloop(net,Xfo,Afo);
[yPred,Xfc,Afc] = netc(inputSeriesVal,Xic,Aic);
multiStepPerformance = perform(net,yPred,targetSeriesVal);
view(netc)
figure;
plot([cell2mat(targetSeries),nan(1,N);
nan(1,length(targetSeries)),cell2mat(yPred);
nan(1,length(targetSeries)),cell2mat(targetSeriesVal)]')
legend('Original Targets','Network Predictions','Expected Outputs')
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 27 Nov. 2015
Your complete data set does not appear to be stationary (e.g., constant mean, variance and correlations.
Divide the data into stationary subsets and design a model for each.
Hope this helps.
Greg
4 Kommentare
Greg Heath
am 1 Dez. 2015
Look at the plot! There are 5 separate regions, each with a separate set of summary statistics.
MAPSTD is not necessary. I prefer using the function ZSCORE before training to detect outliers for removal or modification. Then I use the default MAPMINMAX. An alternative would be to replace the the default with MAPSTD or '' (i.e., nothing).
You can refer to any of my zillions of postings in the NEWSGROUP or ANSWERS.
Greg
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Predictive Maintenance Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!