TDNN multistep prediction with unknown future data for the target
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hugo Mendonça
am 16 Nov. 2015
Kommentiert: Hugo Mendonça
am 17 Nov. 2015
Hi, everyone!
I am a little bit confused how to use a time delay neural network for multistep ahead prediction.
By my system characteristics, I must use a time delay neural network and not others. So, from previous measurement, I know the input and target time series, where:
Xdata(1:500) (input)
Tdata(1:500) (target)
Let's create the neural network:
net = timedelaynet(1:10,10);
[Xs,Xi,Ai,Ts] = preparets(net,Xdata,Tdata);
net = train(net,Xs,Ts,Xi,Ai);
I can clearly understand all the procedure until this point. However, I do not know how to prepare the new input data to be predicted and to use the net. I mean, in the future, I will just know the input data. So, how I could predict it? For example:
Xnew1(1:50);
Y1 = net(Xnew1,Xi,Ai);
Ans further, for a new data:
Xnew2(51:100);
Y2 = net(Xnew2,Xi,Ai);
Would it be the same? With the same Xi and Ai?
Thanks for helping!
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 17 Nov. 2015
In general, PREPARETS will yield the correct inputs. However, for TIMEDELAYNET, just use common sense:
Ai = {} % There is no feedback
Xi = Xnew2(:,1:10);
Xnew2s = Xnew2(:, 10:end);
Hope this helps.
Thank you for formally accepting my answer
Greg
PS: See my tutorials
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!