Parametric System of differential equation, finally plotting against the parameter
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Below is the mathematica code for Parametric System of differential equations with parameter e. I want to find Re[g[[1]] for different values of e ..... But there is no syntax like table in Matlab.
m=3.5;
pot[x_] := -(I*x)^m;
d = 3;
zaf = Table[
sol1 =
NDSolve[{sy''[x] + sy[x]*(e - (pot[x])) == 0, sy[0] == 1,
sy'[0] == 0},
{sy}, {x, 0, d}];
u1 = sy[d] /. sol1; pu1 = sy'[d] /. sol1;
sol2 =
NDSolve[{fy''[x] + fy[x]*(e - (pot[x])) == 0, fy[0] == 0,
fy'[0] == 1},
{fy}, {x, 0, d}];
v1 = fy[d] /. sol2; pv1 = fy'[d] /. sol2;
sol3 =
NDSolve[{ty''[x] + ty[x]*(e - (pot[x])) == 0, ty[0] == 1,
ty'[0] == 0},
{ty}, {x, 0, -d}];
u2 = ty[-d] /. sol3; pu2 = ty'[-d] /. sol3;
sol4 =
NDSolve[{zy''[x] + zy[x]*(e - (pot[x])) == 0, zy[0] == 0,
zy'[0] == 1},
{zy}, {x, 0, -d}];
v2 = zy[-d] /. sol4; pv2 = zy'[-d] /. sol4;
f = v1/u1 - v2/u2;
g = v1*u2 - v2*u1;
{e, Re[g[[1]]]}, {e, 0.8, 30, .01}]
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!