By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?

2 Ansichten (letzte 30 Tage)
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks

Akzeptierte Antwort

Greg Heath
Greg Heath am 15 Nov. 2015
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
  2 Kommentare
coqui
coqui am 18 Nov. 2015
thank you Greg.
I only have 1 series, I have used FITNET. To continue beyond the original data (for example, 50 points) how I can do it?
Greg Heath
Greg Heath am 18 Nov. 2015
Bearbeitet: Greg Heath am 18 Nov. 2015
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by