Bivariate nakagami m distribution

1 Ansicht (letzte 30 Tage)
GSM
GSM am 30 Okt. 2015
Hello, I am trying to use Bivariate Nakagami-m distribution for calculating E{Perr}... To check myself I've tried to Integrate only the Bivariate Nakagami pdf using integral2 over [-inf,inf] range. Of course I expect to get - 1. Before using the Nakagami pdf I've tried with Normal distribution and have used the following code:
xmu = 0; ymu = 0; xvar = 1; yvar = 1; rho = 0.5; xsd = sqrt(xvar); ysd = sqrt(yvar); covxy = rho*xsd*ysd; C = [xvar covxy; covxy yvar]; A = inv(C); dist2D = @(X,Y) 1./(2.*pi.*sqrt(det(C))) .* exp(-0.5 .* (A(1,1).*(X-xmu).^2 + 2.*A (1,2).*(X-xmu).*(Y-ymu) + A(2,2).*(Y-ymu).^2));
q = integral2(dist2D,-inf,inf,-inf,inf,'RelTol',0,'AbsTol',1e-12)
The result is as expected: q=1
When trying to perform same thing over Bivariate Nakagami-m distribution, but in the following range [0,inf,0,inf] - I get the following message: Warning: Minimum step size reached near x = 3.38583e+21. There may be a singularity, or the tolerances may be too tight for this problem. > In integralCalc/checkSpacing (line 456) In integralCalc/iterateScalarValued (line 319) In integralCalc/vadapt (line 132) In integralCalc (line 83) In integral2Calc>@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions) (line 17) In integral2Calc>@(x)arrayfun(@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions),x,ymin(x),ymax(x)) (line 17) In integralCalc/iterateScalarValued (line 314) In integralCalc/vadapt (line 132) In integralCalc (line 83) In integral2Calc>integral2i (line 20) In integral2Calc (line 7) In integral2 (line 106) In plotNakagami2D (line 9) Warning: The integration was unsuccessful.
I am using the following code: m=0.5; r=0.5; k=(2*m^m)/(gamma(m)*(sqrt(r))^(m-1)); a=(2*m)/(1-r); dist2D = @(h1,h2) k*a.*((h1/sqrt(mean(h1.^2))).*(h2/sqrt(mean(h2.^2)))).^m .* exp((-a/2).*((h1/sqrt(mean(h1.^2))).^2+(h2/sqrt(mean(h2.^2))).^2)) .* besseli(m-1,a.*sqrt(r).*(h1/sqrt(mean(h1.^2))).*(h2/sqrt(mean(h2.^2)))); q = integral2(dist2D,-0,inf,-0,inf)
The Bivariate Nakagami-m distribution used is taken from eq.(64) in the following paper: "On the Bivariate Nakagami-m Cumulative Distribution Function: Closed-Form Expression and Applications", by Lopez-Martinez, F. J., Morales-Jimenez D., Martos-Naya E., & Paris J. F.
Can please someone help me to perform the integration?
Thanks!

Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by