While running the following program error occur as " TrainOb = 228 ??? Index exceeds matrix dimensions"
    5 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    satheeshkumar satheeshkumar M
 am 18 Okt. 2015
  
    
    
    
    
    Kommentiert: Walter Roberson
      
      
 am 3 Nov. 2015
            %*************************************
% Begin of Program
% Set parameters 
% Clear the operating environment
clc;
clear all;
load TXY.txt;
% for testing length of TXY
LengthofInputdata=length(TXY);
% TXY;
% Input No. of Normalized Data
%  Or use mapminmax;
TrainOb=228  % No. of Traning data
% LenghtofTrain=length(OP)
P = TXY(1:TrainOb,1:7);
LenghtofTrain=length(P)
   P=P'
%  Normalized the Data
   for i9=1:length(P(:,1))
      P(i9,:)=(P(i9,:)-min(P(i9,:)))/(max(P(i9,:))-min(P(i9,:)));
   end
NP=P
LtofTrNormal=length(NP);
Ltr=length(NP);
[row,col]=size(TXY);
set=row/5;
row=row-set;
row1=row/2;
%***************************
Lth=length(TXY)
OP = TXY(1:TrainOb,1:7);
LenghtofTrain=length(OP)
NP=NP'
% for testing length of traindata1
traindata1=NP(1:row1,1:col-1);
% length(traindata1);
% for testing length of traindata2
traindata2=NP(row1+1:row,1:col-1);
%length(traindata2);
% target of traindata1
t1=NP(1:row1,col);
% target of traindata2
t2=NP(row1+1:row,col);
t1=t1'
t2=t2'
tr1=traindata1'
tr2=traindata2'
la=1;
X_axis=rand();
Y_axis=rand();
maxgen=100;  
% maxgen=50;  
sizepop=10; 
%*********
for i=1:sizepop
X(i)=X_axis+20*rand()-10;
Y(i)=Y_axis+20*rand()-10;
D(i)=(X(i)^2+Y(i)^2)^0.5;
S(i)=1/D(i);
%***
g=0;
p=S(i); % Learning spread of GRNN
if 0.001>p
  p=1;
end
% Cross validation
if la == 1
    net=newgrnn(tr1,t1,p);
    yc=sim(net,tr2);
    y=yc-t2;%
    for ii=1:row1
      g=g+y(ii)^2;
    end
Smell(i)=(g/row1)^0.5; % RMSE
la=2;
   else
    net=newgrnn(tr2,t2,p);
    yc=sim(net,tr1);
    y=yc-t1;%
    for ii=1:row1
      g=g+y(ii)^2;
    end
    Smell(i)=(g/row1)^0.5; % RMSE
la=1;
   end
end
%***
[bestSmell bestindex]=min(Smell);
X_axis=X(bestindex);
Y_axis=Y(bestindex);
bestS=S(bestindex);
Smellbest=bestSmell;
%
for gen=1:maxgen
gen 
bestS
    for i=1:sizepop
   %
    g=0;
    X(i)=X_axis+20*rand()-10;
    Y(i)=Y_axis+20*rand()-10;
    %
    D(i)=(X(i)^2+Y(i)^2)^0.5;
    %
    S(i)=1/D(i);
    %
    p=S(i); % Learning the spread of GRNN
    if 0.001>p
    p=1;
    end
% Cross validation
if la == 1
  net=newgrnn(tr1,t1,p);
  yc=sim(net,tr2);
    y=yc-t2;%
    for ii=1:row1
      g=g+y(ii)^2;
    end
    Smell(i)=(g/row1)^0.5;  % RMSE
la=2;
   else
    net=newgrnn(tr2,t2,p);
    yc=sim(net,tr1);
    y=yc-t1;
    for ii=1:row1
      g=g+y(ii)^2;
    end
    Smell(i)=(g/row1)^0.5;  
    la=1;
   end
end
    %***
    [bestSmell bestindex]=min(Smell); % find the min of RMSE
    %***
     if bestSmell<Smellbest
           X_axis=X(bestindex);
           Y_axis=Y(bestindex);
           bestS=S(bestindex);
           Smellbest=bestSmell;
     end
     %
     yy(gen)=Smellbest; 
     Xbest(gen)=X_axis;
     Ybest(gen)=Y_axis;
  end
%
figure(1)
plot(yy)
title('Optimization process','fontsize',12)
xlabel('Iteration Number','fontsize',12);ylabel('RMSE','fontsize',12);
bestS
Xbest
Ybest
figure(2)
plot(Xbest,Ybest,'b.');
title('Fruit fly flying route','fontsize',14)
xlabel('X-axis','fontsize',12);ylabel('Y-axis','fontsize',12);
%*******Begin to Predict
% TestData
LengthofInputdata=length(TXY)
% Input No. of Normalized Testing Data 
% LenghtofAll=length(OP)
P = TXY(1:LengthofInputdata,1:7);
% LenghtofTallData=length(P);
% Length of testing data (All Data Normalized)
% Changed Non-normalized Data into Normalized Data
P=P';
for i9=1:length(P(:,1))
  P(i9,:)=(P(i9,:)-min(P(i9,:)))/(max(P(i9,:))-min(P(i9,:)));
end
Nt=P';
% Training Data
TrainData=Nt(1:row,1:col-1);
tr=TrainData';
% tr=[tr1 tr2]
% LTr=length(tr)
% Testing Data
TestData=Nt(row+1:LengthofInputdata,1:col-1);
% predict value of testdata
% No target Y
test3=TestData';
LengthofTestData=length(TestData)
t3=TXY(row+1:LengthofInputdata,col);
% length_tr3=length(tr3);
% tt=Nt(1:row,col);
tt=[t1 t2];
% Ltt=length(tt)
% bestS for parameter p;
p=bestS;
% TrainData put inot grnn
net=newgrnn(tr,tt,p);
%%predict value of testdata
ytest=sim(net,test3);
Y_hat=ytest'
% length_Y_hat=length(Y_hat)
% Predicted output Y_hat normalized
Lny=length(Y_hat);
P = Y_hat(1:Lny,1);
P=P';
LenghtofTrain=length(P)
% Changed Non-normalized Data into Normalized Data
for i9=1:length(P(:,1))
    P(i9,:)=(P(i9,:)-min(P(i9,:)))/(max(P(i9,:))-min(P(i9,:)));
end
   NPP=P';
% target of testdata
Target3=t3;
save Y_hat
% End of Program
DATA:
TXY.txt:
-0.14 13.21 67.57 -102.79 7 0 0
-0.77 8.24 -45.01 -102.04 7 0 1
0.63 23.86 -44.33 -33.27 4 0 1
-1.55 23.73 14.95 128.27 7 1 0
1.71 44.32 10.13 8.38 7 0 1
0.86 18.03 -11.6 9.72 5 0 1
-3.36 16.97 66.23 80.83 10 0 0
2.16 11.71 -19.3 -30.35 6 0 1
2.19 18.19 -1.61 20 7 0 1
-5.12 3.51 40.61 2.75 10 0 0
0.26 7.05 -12.44 -76.7 4 0 1
0.94 39.03 -3.53 -29.26 4 0 1
-3.45 12.1 28.25 98.66 9 1 0
0.26 7.05 -12.44 -76.7 4 0 1
-1.64 9.97 17.93 68.33 6 0 1
-30.54 2 -75.62 -304.66 10 0 0
-1.64 9.97 17.93 68.33 6 0 1
0.89 33.97 -1.11 -46.5 8 0 1
8.5 12.49 92.58 20.64 10 0 0
-2.91 3.55 -66.12 -2280.87 6 0 1
13.27 11.2 6.47 11.86 5 0 1
-45.41 -14.41 48.3 -34.01 10 0 0
0.58 8.05 0.73 -58.02 5 0 1
-2.91 3.55 -66.12 -2280.87 6 0 1
-34.97 8.62 68.62 -109.11 9 1 0
6.86 60.46 11.41 87.51 5 0 1
5.18 36.69 11.8 265.44 7 0 1
-22.13 3.89 48.62 -35.67 9 0 0
2.16 11.71 -19.3 -30.35 6 0 1
2.19 18.19 -1.61 20 7 0 1
4.62 7.75 439.85 232.22 7 0 0
6.61 17.28 118.89 742.37 6 0 1
1.34 10.6 -8.63 -57.62 6 0 1
-3.07 1.57 -45.41 -86.28 10 6 0
0.26 9.3 10.29 -132.6 6 0 1
5.21 27.9 12.24 -9.6 2 0 1
-10.95 3.18 -35.88 1.17 8 0 0
2.05 3.99 -68.34 -131.13 6 0 1
0.73 14.35 0 -67.23 5 0 1
-4.69 8.57 24.27 -309.74 9 2 0
3.11 10.75 -48.55 -50.82 3 0 1
0.86 15.2 0.73 47.41 5 0 1
-11.21 13.33 -34 -369.86 10 0 0
-0.23 -0.03 -102.15 110.51 7 0 1
-0.33 9.36 272.19 -24.36 8 0 1
-5.61 100 -94.89 31.85 10 0 0
-0.19 5.47 -38.36 -50.19 6 0 1
0.74 8.07 -5.47 50.09 6 0 1
-5.91 -18.23 -951.11 57.34 9 0 0
-2.01 5.99 396.44 42.35 6 0 1
1.9 8.77 -49.71 -53.56 7 0 1
-11.4 5.57 -42.36 2.26 9 0 0
9.78 20.43 22.84 34.61 5 0 1
4.05 14.52 -52.99 -48.17 6 0 1
-12.05 -2.43 -160.22 -177.48 10 0 0
6.5 14.47 -18.25 28.53 3 0 1
2.63 12.07 3.13 224.81 6 0 1
-1.74 3.29 -43.77 -1601.44 9 3 0
0.27 -1.01 -118.66 -94.51 9 0 1
0.26 9.3 10.29 -132.6 6 0 1
-3.83 -2.34 -125.1 -142.15 6 0 0
-0.33 9.36 272.19 -24.36 8 0 1
-8.86 25.18 29.31 18.42 7 0 1
-1.9 7.97 207.03 -128.86 8 0 0
0.73 14.35 0 -67.23 5 0 1
2.05 3.99 -68.34 -131.13 6 0 1
2.29 15.66 -14.89 -24.02 5 0 0
0.33 9.07 6.08 -19.98 6 0 1
0.29 13.72 689.79 117.49 6 0 1
-27.99 6.43 -60.04 -15272.03 10 2 0
1.9 8.77 -49.71 -53.56 7 0 1
0.07 14.11 -7.87 178.5 7 0 1
-21.1 16.08 -23.44 -2686.34 9 0 0
9.4 19.04 -2.74 11.06 4 0 1
6.95 11.54 36.56 53.24 4 0 1
-23.51 7.39 23.31 -155.29 8 6 0
1.65 11 263.39 120.71 5 0 1
3.26 12.4 39.14 1806.34 6 0 1
-0.2 13.58 -16.87 -97.18 8 5 0
9.4 19.04 -2.74 11.06 4 0 1
0.82 20.92 30.78 59.47 5 0 1
-3.93 9.06 18.53 -1153.33 10 0 0
1.6 8.34 60.64 257.58 7 0 1
-3.35 1.7 -74.91 -217.91 7 0 1
-10.76 6.24 16.23 -221.14 10 0 0
9.82 17.49 -9.26 -53.57 5 0 1
1.84 5.66 7.26 -26.04 9 0 1
1.23 9.95 -7.19 -74.09 5 1 0
11.53 23.88 17.4 35.92 3 0 1
3.71 18.67 -28.65 -37.32 4 0 1
-22.62 -5.58 -150.28 -217.77 9 0 0
3.75 18.38 -3.5 19.14 6 0 1
0.83 23.69 -1.18 -79.52 6 0 1
7.01 35.21 3.01 -3.87 5 0 0
4.94 25.39 -30.9 -42.45 2 0 1
0.83 23.69 -1.18 -79.52 6 0 1
-13.23 2 -87.55 -52.61 10 0 0
3.75 18.38 -3.5 19.14 6 0 1
0.83 23.69 -1.18 -79.52 6 0 1
-0.55 10.5 -3.12 -184.86 9 0 0
0.67 10.75 -13.25 -71.05 5 0 1
1.58 8.81 -16.63 47.63 5 0 1
-6.81 -4.39 -148.74 -4639.23 8 0 0
0.6 12.04 -24.77 -82.12 7 0 1
0.67 10.75 -13.25 -71.05 5 0 1
0.97 8.86 35.19 -64.56 10 1 0
0.74 0.33 -97.31 -50.44 9 0 1
4.32 23.64 115.67 158.93 6 0 1
-0.35 5.52 -38.9 -43.59 6 0 0
18.77 21.24 70.69 213.78 5 0 1
3.24 8.15 -23.34 -29.07 5 0 1
0.18 10.01 -15.56 -82.76 5 0 0
0.6 12.04 -24.77 -82.12 7 0 1
1.58 8.81 -16.63 47.63 5 0 1
-3.45 -0.95 -126.29 -50.41 9 0 0
0.8 10.22 -53.07 -77.37 5 0 1
0.55 7.6 -51.53 -91.71 8 0 1
-6.44 2.01 -61.36 -199.43 10 0 0
1.96 12.34 18.85 -6.92 3 0 1
0 17.15 48.18 100.28 9 0 1
8.15 17.44 -19.84 497.17 10 2 0
-1.35 11.25 -34.31 -464.82 6 0 1
2 14.1 -26.74 -73.15 5 0 1
2.61 8.84 -14.93 -68.16 5 2 0
10.13 13.78 20.29 4.35 2 0 1
9.6 7.14 14.44 71.97 3 0 1
-10.79 -13.05 8.29 -21.44 7 0 0
1.4 30.21 -16.22 -47.81 3 0 1
4.31 19.86 10.42 7.25 4 0 1
-14.21 -4.6 -268.95 -61.2 7 0 0
-11.58 5.32 653 32.06 7 0 1
12.3 13.86 -2.71 -29.84 5 0 1
-48.86 -0.29 -126.34 -76.73 10 0 0
3.97 9.21 -44.05 -66.77 6 0 1
5.94 10.9 -11.1 -51.3 5 0 1
-17.76 15.48 -35.12 -535.39 7 0 0
1.4 30.21 -16.22 -47.81 3 0 1
18.11 29.29 -14.81 -42.33 3 0 1
-1.88 0.58 371.14 71.68 8 0 0
3.74 31.32 -29.26 -18.48 7 0 1
7.12 23.44 -5.04 -5.85 4 0 1
-82.48 -3.44 -251.13 -336.18 9 0 0
12.4 13.4 74.63 463.66 3 0 1
-4.94 11.82 7.5 -156.64 3 1 1
-8.19 -14.03 -270.09 -58.22 8 0 0
-1.53 5.99 32.02 67.99 4 0 1
3.99 22.05 108.86 169.04 5 0 1
-78.39 6.11 -72.05 -1831.99 10 1 0
10.14 41.46 -24.61 -24.72 7 0 1
8.79 23.73 75.89 97.87 5 0 1
-52.33 -1.08 -120.7 -359.6 10 0 0
6 23.17 45.78 22.32 6 0 1
-0.8 4.75 -38.12 -108.25 5 0 1
-4.21 10.76 -22.84 -761.79 7 0 0
1.63 24.41 59.22 2597.98 6 0 1
4.14 16.34 -6.9 -29.69 4 0 1
-3.06 11.1 -5.34 -95.63 7 0 0
15.45 19.54 77 114.63 3 0 1
1.33 13.54 -13.37 -9.4 5 0 1
-1.22 27.46 -24.06 -491.9 10 10 0
0.5 15.15 42.14 413.46 6 0 1
2.51 9.69 -40.47 -70.48 6 0 1
-14.06 64.54 -38.98 -881.36 10 0 0
5.26 45.49 5.86 58.66 4 0 1
1.48 82.08 8.9 21.19 5 0 1
-2.69 11.16 13.22 89.63 9 2 0
-1.51 16.49 18.28 -190.98 9 0 1
3.72 31.63 41.32 1404.3 4 0 1
-90.57 23.43 -28.73 -3899.68 10 3 0
13.36 20.05 107.41 213.94 7 0 1
4.41 18.59 11.08 156.87 6 0 1
-9.57 12.83 36.14 17.88 10 4 0
5.05 91.28 -0.45 3.36 5 0 1
-0.83 20.98 -22.46 -148.87 6 0 1
-14.61 0.2 -92.89 56.24 8 0 0
4.75 27.37 -0.39 -42.92 5 0 1
4.11 9.02 -3 5.82 4 0 1
-9.99 2.16 -69.68 -512.26 9 0 0
-12.44 11.99 0.27 -139.13 7 0 1
6.1 18.05 41.2 39.99 5 0 1
-7.56 -3.54 -121.19 -81.83 9 0 0
3.98 12.43 0.29 -27.95 4 0 1
1.76 12.42 31.47 -45.64 6 0 1
-4.26 3.99 -43.13 -6096.46 10 0 0
3.16 18.11 11.05 73.39 5 0 1
2.54 13.65 25.38 34.8 6 0 1
126.61 -33.48 -206.6 221.24 10 0 0
-3.61 -6.13 -49.71 -54.52 7 0 1
2.63 12.07 3.13 224.81 6 0 1
-17.46 2.53 -71.83 -524.78 9 0 0
-2.01 5.99 396.44 42.35 6 0 1
4.05 14.52 -52.99 -48.17 6 0 1
-5.12 11.95 -14.64 -1380.43 10 3 0
0.29 13.72 689.79 117.49 6 0 1
0.86 6.62 647.42 -48.73 6 0 1
-29.99 3.57 -50.86 45.34 10 0 0
11.61 16.04 39.32 182.8 5 0 1
12.9 8.2 -17.84 113.1 6 0 1
-14.64 -5.48 -232.59 14.51 8 0 0
12.62 15.49 -5.19 -11.24 6 0 1
14.18 29.38 3.07 -9.58 6 0 1
17.15 17.04 0.4 213.03 5 7 0
12.25 26.81 4.38 35.03 5 0 1
5.11 23.76 -2.31 -12.48 4 0 1
-74.86 4.05 -73.43 -431.64 10 0 0
15.47 68.66 14.49 2.35 4 0 1
1.31 9.21 7.98 -57.97 6 0 1
-1.91 6.58 -26.15 -179.17 8 0 0
0.8 10.22 -53.07 -77.37 5 0 1
0.55 7.6 -51.53 -91.71 8 0 1
-7.7 3.72 -43.83 -8.05 10 0 0
0 17.15 48.18 100.28 9 0 1
1.96 12.34 18.85 -6.92 3 0 1
-17.56 7.34 -67.84 -6347.57 10 0 0
11.48 82.82 61.64 91.78 6 0 1
0.13 13.37 12.03 -86.4 7 0 1
-13.51 23.98 13.12 -8.19 9 2 0
0.47 22.13 33.29 -33.64 6 0 1
38.11 68.2 12.91 -2.83 5 0 1
-39.95 22.37 -25.11 -766.53 10 0 0
-1.03 87.61 178.9 104.31 7 3 1
-15.86 40.02 -34.32 3.35 7 0 1
-14.17 6.54 -11.38 -588 10 0 0
4.52 15.78 -37.81 -28.57 6 0 1
13.18 43.66 -8.15 2.73 6 0 1
-36.04 -49.94 -728.54 -6401.43 8 0 0
2.49 18.41 -19.18 -90.88 4 0 1
9.36 22.66 -14.66 -16.67 3 0 1
-19.33 -33.64 -22.01 56.85 6 0 0
1.42 9.67 51.56 157.68 3 0 1
-4.96 2.17 427.12 -18.29 6 0 1
-6.09 5.33 -30.31 -103.78 7 0 0
13.09 12.49 12.82 22.62 5 0 1
13.89 26.83 140.51 629.3 6 0 1
-7.79 9.37 115.07 47.13 10 0 0
1.32 31.91 -38.97 -97.94 7 0 1
4.65 31.12 15.22 251.46 6 0 1
-175.79 2.81 -83.18 -1068.06 10 0 0
-0.63 6.63 3.96 -136.77 8 1 1
4.49 17.55 -10.92 -9.95 5 0 1
-60.5 -11.72 -137.3 -47.52 9 0 0
-3.56 46.43 -8.58 -45.86 7 0 1
3.42 77.81 1.09 -30.62 4 0 1
2 20.39 20.16 -13.52 10 0 0
3.72 31.63 41.32 1404.3 4 0 1
4.56 14.7 -9.16 35.57 3 0 1
-22.98 2.97 -69.61 -341.84 8 1 0
3.67 11 -8.86 -21.02 7 0 1
3.65 34.15 -18.51 -61.79 5 0 1
-15.74 29.07 -56.53 -396.8 9 1 0
4.28 20.05 35.21 10.38 5 0 1
-0.89 11.03 920.73 29.8 8 0 1
-3.97 4.48 -36.95 -175.25 10 3 0
4.03 58.39 14.7 8.94 6 0 1
3.86 18.59 -5.45 -67.56 6 0 1
-16.36 18.63 11.29 -434.7 9 3 0
8.35 20.95 28.67 57.16 5 0 1
6.9 13.71 -21.94 -36.05 6 0 1
-55.84 8.6 -82.3 -1354.3 10 1 0
-4.6 18.7 12.8 -148.26 6 0 1
-4.41 -0.6 -89.79 -185.4 7 0 1
-28.76 -3.56 -191.68 18.83 8 0 0
10.82 18.44 29.13 51.05 7 0 1
17.39 40.03 66.22 202.89 7 1 1
20.47 14.5 150.4 237.44 9 2 0
10.44 61.72 13.64 -13.25 4 0 1
18.74 21.77 80.89 136.69 3 0 1
14.9 26 84.04 209.46 10 0 0
2.63 12.07 3.13 224.81 6 0 1
-6.25 7.19 -57.39 -301.21 8 0 1
4.49 7.27 -9.6 1293.72 9 1 0
13.36 20.05 107.41 213.94 7 0 1
4.41 18.59 11.08 156.87 6 0 1
-26.48 -2.12 -120.43 -984.43 8 0 0
2.37 5.96 119.84 -99.16 5 0 1
0 17.15 48.18 100.28 9 0 1
-7.75 14.79 -6.76 -339.86 10 3 0
-3.22 17.9 -20.21 -109.53 6 0 1
3.41 20.1 -10.41 -50.35 5 1 1
-3.54 12.81 -56.62 -127.07 10 2 0
17.69 15.42 20.61 23.52 2 0 1
10.13 13.78 20.29 4.35 2 0 1
-0.03 16.12 3.35 -95.25 8 0 0
3.41 20.1 -10.41 -50.35 5 1 1
2.99 34.78 18.48 25.64 4 0 1
2 Kommentare
  Jan
      
      
 am 18 Okt. 2015
				
      Bearbeitet: Jan
      
      
 am 18 Okt. 2015
  
			Please format your code properly (as explained in the documentation of the forum and as discussed hundrets of times in other threads). Do you see, that the currently provided code is not readable?
Posting the relevant part of the code would allow us to concentrate on the problem without needing an hour to understand your code. The complete error message would reveal more details.
  satheeshkumar satheeshkumar M
 am 2 Nov. 2015
				
      Bearbeitet: Walter Roberson
      
      
 am 2 Nov. 2015
  
			
		Antworten (1)
  Walter Roberson
      
      
 am 2 Nov. 2015
        At the MATLAB command prompt give the command
dbstop if error
and then run your program again. When it stops with the error, give the comman
dbstack
and show us the output of that.
2 Kommentare
  Walter Roberson
      
      
 am 3 Nov. 2015
				Edit your file in the MATLAB editor at at the line
if la == 1
click on the line. Now click on "Run to Cursor". When it stops, click on "Step" repeatedly until the program fails. When it does tell us which line it failed on.
I cannot test this myself as I do not have the Neural Network toolbox.
Siehe auch
Kategorien
				Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


