What comes after sorting eigenvalues in PCA?

3 Ansichten (letzte 30 Tage)
Shahd Ewawi
Shahd Ewawi am 15 Okt. 2015
Beantwortet: arushi am 1 Aug. 2024
I'm a student, I have to build PCA from scratch using Matlab on iris data. Iris data have 4 features i want to reduce them to 2. I reached the sorting of eigenvalues step. What is the next step?

Antworten (1)

arushi
arushi am 1 Aug. 2024
Hi Shahd,
Steps to Perform PCA from Scratch -
1. Load the Iris Dataset
2. Standardize the Data - Standardize the features to have zero mean and unit variance.
3. Compute the Covariance Matrix - Compute the covariance matrix of the standardized data.
4. Compute Eigenvalues and Eigenvectors - Compute the eigenvalues and eigenvectors of the covariance matrix.
5. Sort Eigenvalues and Corresponding Eigenvectors - Sort the eigenvalues in descending order and sort the eigenvectors accordingly.
6. Select Top `k` Eigenvectors - Select the top `k` eigenvectors (where `k` is the number of dimensions you want to reduce to, in this case, 2).
7. Transform the Data - Transform the original data to the new subspace using the selected principal components.
Hope this helps.

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by