Solving Linear Equation of a Scattering Problem

2 Ansichten (letzte 30 Tage)
Burak
Burak am 14 Okt. 2015
Bearbeitet: Burak am 14 Okt. 2015
There is an equation I need to solve like this;
Ln+an*Mn=∑Nnm*cm On+an*Pn=∑Qnm*cm summation for m's -infinity to infinity
Ln,Mn,Nnm,On,Pn are known.an,cm are unknown. I need to get an for calculation. If anyone can help me , I'll appreciate.
Here is my code:
clear all
format long
tic
N_cut=20;
eps0=(10^-9)/(36*pi);
mu0=4*pi*10^-7;
epsr1=1.;
epsr2=2.7;
mur1=1.;
mur2=1.;
eps1=epsr1*eps0;
eps2=epsr2*eps0;
mu1=mur1*mu0;
mu2=mur2*mu0;
freq=900*10^6;
omeg=2*pi*freq;
sigma2=3e-7;
k0=omeg*sqrt(eps0*mu0);
k1=sqrt(omeg*omeg*eps2*mu2+1i*omeg*sigma2*mu2);
lambda=2*pi/k0;
a0=4.25e-2;
a1=3e-3;
d=1e-2;
phi_prime=pi/4;
nu0=sqrt(mu0/eps0);
nu1=sqrt((1i*omeg*mu0)/(sigma2+1i*omeg*eps2));
M_phi=180;
phibegin=0;
phiend=2*pi;
deltaphi=(phiend-phibegin)/M_phi;
phig=phibegin:deltaphi:phiend;
R_obs=4.2555e-2;
for n=1:N_cut L(n)=((-1j)^n)*besselj(n,k0*a0); M(n)=((-1j)^n)*besselh(n,2,k0*a0); bessel_der_1(n)=0.5*(besselj(n-1,k0*a1)-besselj(n+1,k0*a1)); hankel_der_1(n)=0.5*(besselh(n-1,2,k0*a1)-besselh(n+1,2,k0*a1)); bessel_der_2(n)=0.5*(besselj(n-1,k1*a1)-besselj(n+1,k1*a1)); hankel_der_2(n)=0.5*(besselh(n-1,2,k1*a1)-besselh(n+1,2,k1*a1)); O(n)=(1/nu0)*((-1j)^n)*bessel_der_1(n); P(n)=(1/nu0)*((-1j)^n)*hankel_der_1(n); for m=1:N_cut K(m)=(-besselh(m,2,k1*a1))/(besselj(m,k1*a1)); N(n,m)=((-1j)^m)*besselj(n-m,k1*d)*besselj(n,k1*a1)*exp(-1j*(n-m)*phi_prime)*K(m)+((-1j)^m)*besselj(n-m,k1*d)*besselh(n,2,k1*a1)*exp(-1j*(n-m)*phi_prime); Q(n,m)=((1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*bessel_der_2(n)*exp(-1j*(n-m)*phi_prime)*K(m)+(1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*hankel_der_2(n)*exp(-1j*(n-m)*phi_prime));
end
end
for mg=1:M_phi+1 for n=1:N_cut Es(mg,n)=((-1j)^n)*(a(n)*besselh(n,2,k0*R_obs))*exp(-1j*n*phig(mg)); end end F_Es=sum(Es,2); figure plot(rad2deg(phig),abs(F_Es),'r') grid on

Antworten (0)

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by