How to speed up function evaluation by vectorization
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Frederik Lohof
am 7 Okt. 2015
Bearbeitet: Frederik Lohof
am 7 Okt. 2015
Is there a way to speed up this code significantly? Maybe by more vectorization?
It is the evaluation of a Hesse matrix. The first loop is a "dot product" between basis elements in the form of 16x16 matrices (Lambda) and corresponding coefficients (T). The second (double-) loop is the evaluation of the Hesse matrix itself.
This is a more generic version of the code:
Hesse=eye(256,256);
B=rand(1296,256);
T=rand(256,1);
Lambda=rand(16,16,256);
f=rand(1296,1);
P_int=B*T;
rho_int=zeros(16);
%Loop 1
for j=1:256
rho_int=rho_int+T(j,1)*Lambda(:,:,j)/2^4;
end
rho_int_inv=inv(rho_int);
%Loop 2
for k=2:256
for l=2:256
Hesse(k,l)=dot(f, (B(:,k).*B(:,l))./(P_int.^2))+trace(rho_int_inv*Lambda(:,:,k)*rho_int_inv*Lambda(:,:,l)/4^4);
end
end
2 Kommentare
Akzeptierte Antwort
Kirby Fears
am 7 Okt. 2015
Bearbeitet: Kirby Fears
am 7 Okt. 2015
The second loop seems fine. Vectorization of loop 1 below.
% rho_int=zeros(16);
% Loop 1 replaced by vector operation
rho_int=sum(repmat(reshape(T,1,1,numel(T)),...
size(Lambda,1),size(Lambda,2)).*Lambda,3)/2^4;
rho_int_inv=inv(rho_int);
You could speed up the second loop with the parallel computing toolbox.
Hope this helps.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Quantum Mechanics finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!