lsqcurvefit
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Would LSQCURVEFIT work with comparing two complex functions? It looks like the metric for success is min sum {(FUN(X,XDATA)-YDATA).^2}, where it should be min sum {abs(FUN(X,XDATA)-YDATA).^2)} for complex-valued functions, or maybe sum {(FUN(X,XDATA)-YDATA).conj((FUN(X,XDATA)-YDATA))} Thanks Matt
0 Kommentare
Akzeptierte Antwort
Andrew Newell
am 3 Mär. 2011
Since the distance between two complex numbers a+i*b and c+i*d is (a-c)^2 + (b-d)^2, you could treat each complex number as a pair of independent real numbers. Wrap fun in a function rfun that returns the real and complex parts of the output. For example, assuming rfun returns a column vector,
function y = rfun(x)
y = rfun(x);
y = [real(y); imag(y)];
end
Similarly, you could replace ydata by
rdata = [real(ydata); imag(ydata)].
Then you have the first two inputs for lsqcurvefit.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!