how to solve this equation?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Ankit agrawal
am 6 Sep. 2015
Bearbeitet: Mohammad Abouali
am 6 Sep. 2015
(1+cost)(tcost-sint)=2K(sint^2), where k is a constant
0 Kommentare
Akzeptierte Antwort
Mohammad Abouali
am 6 Sep. 2015
Bearbeitet: Mohammad Abouali
am 6 Sep. 2015
well a quick look at the equation, t=0 is always the solution regardless of the value of K.
However, if you want to solve these numerically you can choose an approach like below:
K=2;
fun=@(t) (1+cos(t)).*(t.*cos(t)-sin(t))-2*K*(sin(t).^2);
% or the following. Not sure which one you want.
% fun=@(t) (1+cos(t)).*(t.*cos(t)-sin(t))-2*K*(sin(t.^2));
Options=optimset(@fsolve);
Options.TolFun=1e-10;
[x,fval,exitflag,output] = fsolve(fun,1,Options)
x =
1.4560e-04
fval =
-8.4804e-08
exitflag =
1
output =
iterations: 12
funcCount: 26
algorithm: 'trust-region-dogleg'
firstorderopt: 9.8791e-11
message: 'Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the selected valu...'
2 Kommentare
Mohammad Abouali
am 6 Sep. 2015
Bearbeitet: Mohammad Abouali
am 6 Sep. 2015
Sure you can.
K=2;
fun1=@(t) (1+cos(t)).*(t.*cos(t)-sin(t));
fun2=@(t) 2*K*(sin(t.^2));
ezplot(fun1,[1,pi])
hold on
h=ezplot(fun2,[1,pi]);
set(h,'Color','r')
legend('(1+cost)(tcost-sint)','2K(sint^2)')
where fun is your function defined in previous code.
BTW, if you are interested in the solution between the [1,pi] you can use fminbnd function as follow:
fminbnd(fun,1,pi)
ans =
1.2915
fminbnd(fun,1.3,pi)
ans =
2.7949
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Computations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!