How to do parameter fitting for a system of equations with 3 independent variables?

2 Ansichten (letzte 30 Tage)
I have a system of 3 equations with 3 independent variables( x1,x2,x3) and correspondingly 3 dependent variables( y1,y2,y3) as follows:
  • y1=((b1*x1)/(1+(b1*x1)+(b2*x2)+(b3*x3))) + ((b4*x1)/(1+(b1*x1)+(b2*x2)+(b3*x3)));
  • y2=((b2*x2)/(1+(b1*x1)+(b2*x2)+(b3*x3))) + ((b5*x2)/(1+(b1*x1)+(b2*x2)+(b3*x3)));
  • y3=((b3*x3)/(1+(b1*x1)+(b2*x2)+(b3*x3))) + ((b6*x3)/(1+(b1*x1)+(b2*x2)+(b3*x3)));
x and y data are available.
I need to fit 6 parameters( b1,b2,b3,b4,b5,b6) in this system.
I tried using nlinfit but couldn't make it work for this case. Suggest me how to solve this problem. Thank you.

Akzeptierte Antwort

Torsten
Torsten am 18 Aug. 2015
Bearbeitet: Torsten am 18 Aug. 2015
xdata = horzcat(x1,x2,x3);
ydata = horzcat(y1,y2,y3);
fun=@(b,xdata) horzcat((b(1)+b(4))*x1./(1+b(1)*x1+b(2)*x2+b(3)*x3),(b(2)+b(5))*x2./(1+b(1)*x1+b(2)*x2+b(3)*x3),(b(3)+b(6))*x3./(1+b(1)*x1+b(2)*x2+b(3)*x3));
b0=[1 ; 1 ; 1 ; 1 ; 1 ; 1];
[x,resnorm] = lsqcurvefit(fun,b0,xdata,ydata);
Best wishes
Torsten.
  1 Kommentar
Amaya
Amaya am 25 Mai 2017
I tried doing this on a similar problem and the extimated x output changes with the initial guess, even when setting a very low tolerance:
% code
opts = optimset('TolX',1e-15);
[vestimated,resnorm] = lsqcurvefit(fun,x0,xdata,ydata,[],[],opts);%
how does lsqcurvefit pass x1,x2 and x3 into fun?, shouldn't fun be expressed in terms of
xdata(initial_index:final_index).
rather than in terms of x1,x2 and x3?
Thanks

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Balan
Balan am 18 Aug. 2015
Works perfect. Thanks a lot Torsten.

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by