Is this code of Angular Spectrum Method correct?
30 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I constructed my code of the Angular Spectrum Method. However, as the distance between the object and the plane of interest increases, the diffraction pattern never disappears; there is still some sort of a diffraction pattern, and I am expecting that it disappears as distance increases.
Here is the code:
clear; clc;
layer = zeros(499, 499);
diameter = 100*10^(-6);
radius = diameter/2;
wavelength = 500*10^(-9);
altitude = 2*10^(-3);
img_width = 1*10^(-3);
img_length = 1*10^(-3);
lambda = wavelength; % wavelength (meters)
z = altitude; % altitude (meters)
k = 2*pi/lambda; % wavenumber
phy_x = img_width; % physical width (meters)
phy_y = img_length; % physical length (meters)
obj_size = size(layer);
% alpha and beta (wavenumber components)
dx = linspace(-phy_x/2, phy_x/2, obj_size(2));
dx = dx(1:length(dx));
dy = linspace(-phy_y/2, phy_y/2, obj_size(1));
dy = dy(1:length(dy));
for i = 1:obj_size(2);
for j = 1:obj_size(1)
if sqrt(dx(i)^2 + dy(j)^2) <= radius;
layer(j, i) = 1;
end;
end;
end;
U0 = fftshift(fft2(layer));
Fs_x = obj_size(2)/img_width; Fs_y = obj_size(1)/img_length;
dx2 = Fs_x^(-1); dy2 = Fs_y^(-1);
x2 = dx2*(0:(obj_size(2) - 1))'; y2 = dy2*(0:(obj_size(1) - 1))';
dFx = Fs_x/obj_size(2); dFy = Fs_y/obj_size(1);
Fx = (-Fs_x/2:dFx:(Fs_x/2 - dFx)); Fy = (-Fs_y/2:dFy:(Fs_y/2 - dFy));
alpha = lambda.*Fx; beta = lambda.*Fy;
% gamma
gamma = zeros(length(beta), length(alpha));
for j = 1:length(beta);
for i = 1:length(alpha);
if (alpha(i)^2 + beta(j)^2) > 1;
gamma(j, i) = 0;
else
gamma(j, i) = sqrt(1 - alpha(i)^2 - beta(j)^2);
end;
end;
end;
U1 = ifft2(fftshift(fft2(layer)).*exp(1i*k.*gamma.*z));
I1 = (1/(16*pi)).*(U1.*conj(U1));
I think my error came from the calculation of the alpha and beta components. I just don't know where...
Thank you in advance.
0 Kommentare
Antworten (1)
Siehe auch
Kategorien
Mehr zu Discrete Fourier and Cosine Transforms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!