Daugman rubber sheet model for performing normalization in iris
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Need code to perform normalization in iris recognition system using Daugman rubber sheet model.
0 Kommentare
Antworten (2)
omar mohamed
am 10 Dez. 2012
if true
function imP = ImToPolar (imR, rMin, rMax, M, N)
% IMTOPOLAR converts rectangular image to polar form. The output image is
% an MxN image with M points along the r axis and N points along the theta
% axis. The origin of the image is assumed to be at the center of the given
% image. The image is assumed to be grayscale.
% Bilinear interpolation is used to interpolate between points not exactly
% in the image.
%
% rMin and rMax should be between 0 and 1 and rMin < rMax. r = 0 is the
% center of the image and r = 1 is half the width or height of the image.
%
% V0.1 7 Dec 2007 (Created), Prakash Manandhar pmanandhar@umassd.edu
[Mr Nr] = size(imR); % size of rectangular image Om = (Mr+1)/2; % co-ordinates of the center of the image On = (Nr+1)/2; sx = (Mr-1)/2; % scale factors sy = (Nr-1)/2;
imP = zeros(M, N);
delR = (rMax - rMin)/(M-1); delT = 2*pi/N;
% loop in radius and for ri = 1:M for ti = 1:N r = rMin + (ri - 1)*delR; t = (ti - 1)*delT; x = r*cos(t); y = r*sin(t); xR = x*sx + Om; yR = y*sy + On; imP (ri, ti) = interpolate (imR, xR, yR); end end
function v = interpolate (imR, xR, yR) xf = floor(xR); xc = ceil(xR); yf = floor(yR); yc = ceil(yR); if xf == xc & yc == yf v = imR (xc, yc); elseif xf == xc v = imR (xf, yf) + (yR - yf)*(imR (xf, yc) - imR (xf, yf)); elseif yf == yc v = imR (xf, yf) + (xR - xf)*(imR (xc, yf) - imR (xf, yf)); else A = [ xf yf xf*yf 1 xf yc xf*yc 1 xc yf xc*yf 1 xc yc xc*yc 1 ]; r = [ imR(xf, yf) imR(xf, yc) imR(xc, yf) imR(xc, yc) ]; a = A\double(r); w = [xR yR xR*yR 1]; v = w*a; end
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Feature Detection and Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!