is the cosh(Hyperbolic cosine) wrong?

3 Ansichten (letzte 30 Tage)
cheng sy
cheng sy am 24 Jun. 2015
Beantwortet: cheng sy am 24 Jun. 2015
In recent days, I have confused by the function of cosh(Hyperbolic cosine) in matlab. Suppose the matrix is the following:
S=[ 1.0e-05 *
-0.1293 + 0.0195i -0.0128 + 0.0079i -0.0144 + 0.0090i
-0.0141 + 0.0085i -0.1266 + 0.0197i -0.0141 + 0.0085i
-0.0144 + 0.0090i -0.0128 + 0.0079i -0.1293 + 0.0195i]
The cosh of S with matlab function cosh, the result is:
ans =
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
In factor, cosh is can be expended by the Maclaurin’s series:
When x is a matrix, the first term of the Maclaurin’s series is unite matrix or identity matrix.
So the result should be :
ans =
1.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
0.0000 - 0.0000i 1.0000 - 0.0000i 0.0000 - 0.0000i
0.0000 - 0.0000i 0.0000 - 0.0000i 1.0000 - 0.0000i

Akzeptierte Antwort

cheng sy
cheng sy am 24 Jun. 2015
The cosh of S with matlab function cosh, the result is:
ans =
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 - 0.0000i 1.0000 - 0.0000i
  1 Kommentar
Torsten
Torsten am 24 Jun. 2015
cosh(A) is evaluated elementwise.
If you want matrix exponential, use Y=(expm(S)+expm(-S))/2.
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (3)

cheng sy
cheng sy am 24 Jun. 2015
In factor, cosh is can be expended by the Maclaurin’s series:

Walter Roberson
Walter Roberson am 24 Jun. 2015
"cosh(X) is the hyperbolic cosine of the elements of X."
In other words, cosh() is applied one by one to the elements of X, independently of the others.

cheng sy
cheng sy am 24 Jun. 2015
thanks!

Kategorien

Mehr zu Trigonometry finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by