Trying to normalize a matrix across all element values.

43 Ansichten (letzte 30 Tage)
jeet-o
jeet-o am 27 Jan. 2026 um 20:08
Bearbeitet: dpb am 29 Jan. 2026 um 17:01
I have the triu of an 8x8 adjacency matrix A shown below. I would LIKE to normallize all the non-zero elements using normalize(A,'range'), for instance with output values between 0 and 1, but NOT column or row-wise - I'd like to normalize across ALL non-zero values. I haven't been able to find options for this. Any help appreciated!
[ 0 54 70 67 18 13 100 18
0 0 89 67 20 37 47 99
0 0 0 38 20 43 49 13
0 0 0 0 26 30 62 27
0 0 0 0 0 11 91 88
0 0 0 0 0 0 17 18
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 ]

Akzeptierte Antwort

dpb
dpb am 27 Jan. 2026 um 20:41
M=[ 0 54 70 67 18 13 100 18
0 0 89 67 20 37 47 99
0 0 0 38 20 43 49 13
0 0 0 0 26 30 62 27
0 0 0 0 0 11 91 88
0 0 0 0 0 0 17 18
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 ];
M(M~=0)=rescale(M(M~=0),0,1)
M = 8×8
0 0.5208 0.6875 0.6562 0.1458 0.0938 1.0000 0.1458 0 0 0.8854 0.6562 0.1667 0.3438 0.4479 0.9896 0 0 0 0.3542 0.1667 0.4062 0.4688 0.0938 0 0 0 0 0.2292 0.2708 0.6042 0.2396 0 0 0 0 0 0.0729 0.9062 0.8750 0 0 0 0 0 0 0.1354 0.1458 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  2 Kommentare
jeet-o
jeet-o am 27 Jan. 2026 um 21:10
Ah! Excellent and elegant. Thank you!
Follow up Question - if I wanted to do something similar, but scaled to standard deviation (such as normallize(A, 'scale'), is there a similar approach?
jeet-o
jeet-o am 27 Jan. 2026 um 21:18
Belay that...I think you've already answered it - namely:
A(A~=0)= normalize(A(A~=0),'scale')
Thanks again.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Matt J
Matt J am 27 Jan. 2026 um 21:01
Bearbeitet: Matt J am 27 Jan. 2026 um 21:06
Normalize across only non-zero elements, or across elements only in the upper triangle? If the latter, then,
A=[ 0 54 0 67 18 13 100 18
0 0 89 67 0 37 47 99
0 0 0 38 -1 43 49 13
0 0 0 0 26 30 62 27
0 0 0 0 0 11 91 88
0 0 0 0 0 0 17 18
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 ];
idx=triu(true(size(A)),1);
A(idx) = normalize(A(idx),'range')
A = 8×8
0 0.5446 0.0099 0.6733 0.1881 0.1386 1.0000 0.1881 0 0 0.8911 0.6733 0.0099 0.3762 0.4752 0.9901 0 0 0 0.3861 0 0.4356 0.4950 0.1386 0 0 0 0 0.2673 0.3069 0.6238 0.2772 0 0 0 0 0 0.1188 0.9109 0.8812 0 0 0 0 0 0 0.1782 0.1881 0 0 0 0 0 0 0 0.0495 0 0 0 0 0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  3 Kommentare
Matt J
Matt J am 27 Jan. 2026 um 22:19
Bearbeitet: Matt J am 27 Jan. 2026 um 22:20
I don't know what is meant by the "8 zeros". The scaling is determined by the min and max of the matrix subset A(idx), indepndently of how many zeros that contains.
dpb
dpb am 27 Jan. 2026 um 22:32
Bearbeitet: dpb am 29 Jan. 2026 um 17:01
"the zero scale then ended up zeroing out some "weights" in the adjacency matrix"
That's the solution you asked for -- "I would LIKE to normallize all the non-zero elements ...with output values between 0 and 1,"
What is supposed to be the minimum value then, if not zero? Specify it as the lower bound.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Produkte


Version

R2025b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by