numerical Instabilities for bessel functions

273 Ansichten (letzte 30 Tage)
Javeria
Javeria am 8 Dez. 2025 um 3:05
Kommentiert: Javeria vor etwa eine Stunde
I write the following code but i used the following parametrs and i did not get any numerical instabilities:
RI = 34.5; % Inner radius (m)
ratio = 47.5/34.5; % Ratio R_E / R_I
RE = ratio*RI; % outer radius (m)
h = 200/34.5 * RI; % Water depth (m)
d = 38/34.5 * RI; % Interface depth (m)
b = h-d;
But when i switch the parameters with this then i get numerical instabilities
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
d = 0.3; % Draft (m)
h = 1.0; % Water depth (m)
b = h-d; %from cylinder bottom to seabed (m)
the following is code
clear all;
close all;
clc;
tic;
% diary('iter_log.txt');
% diary on
% fprintf('Run started: %s\n', datestr(now));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters from your setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = 10; % Number of N modes
M = 10; % Number of M modes
Q = 10; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
d = 0.3; % Draft (m)
h = 1.0; % Water depth (m) % Interface depth (m)
b = h-d; % Distance from cylinder bottom to seabed (m)
g = 9.81; % Gravity (m/s^2)
tau =0.2; % porosity ratio
gamma = 1.0; % discharge coefficient
b1 = (1 - tau) / (2 * gamma * tau^2); % nonlinear coeff
tol = 1e-4; % convergence tolerance
max_iter = 100; % max iterations
l = 0; % Azimuthal order
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% === Compute Bessel roots and scaled chi values ===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
roots = bessel0j(l, Q); % Zeros of J_l(x)
chi = roots ./ RI; % chi_q^l = roots scaled by radius
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ===== Define Range for k_0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X_kRE = linspace(0.0025, 0.16,100); %%%%%% this is now k_0
X_kRE = linspace(0.05, 4.5, 40);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ==============Initialize eta0 array before loop
%===============Initialize omega array before loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eta0 = zeros(size(X_kRE)); % Preallocate
omega = zeros(size(X_kRE)); %%%% omega preallocate
% iters_used = zeros(length(X_kRE),1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for idx = 1:length(X_kRE)
wk = X_kRE(idx); % dimensional wavenumber
omega(idx) = sqrt(g * wk * tanh(wk * h)); % dispersion relation
% fprintf('\n--- idx %3d (T=%6.3f s) ---\n', idx, 2*pi/omega(idx));
% drawnow;
%%%%%%%%%%%%% Compute group velocity %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cg(idx) = (g * tanh(wk * h) + g * wk * h * (sech(wk * h))^2) ...
* omega(idx) / (2 * g * wk * tanh(wk * h));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% =======Compute a1 based on tau
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a1(idx) = 0.93 * (1 - tau) * Cg(idx);
% dissip(idx) = a1(idx)/omega(idx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=============== Find derivative of Z0 at z = -d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z0d = (cosh(wk * h) * wk * sinh(wk * b)) / (2 * wk * h + sinh(2 * wk * h));
fun_alpha = @(x) omega(idx)^2 + g*x.*tan(x*h); %dispersion equation for evanescent modes
opts_lsq = optimoptions('lsqnonlin','Display','off'); % ← add this
for n = 1:N
if n == 1
k(n) = -1i * wk;
else
x0_left = (2*n - 3) * pi / (2*h);
x0_right = (2*n - 1) * pi / (2*h);
guess = (x0_left + x0_right)/2;
% Use lsqnonlin for better convergence
k(n) = lsqnonlin(fun_alpha, guess, x0_left, x0_right,opts_lsq);
%%%%%%%%%%%%% Derivative of Z_n at z = -d %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Znd(n) = -k(n) * (cos(k(n)*h) * sin(k(n)*b)) / (2*k(n)*h + sin(2*k(n)*h));
end
end
%% finding the root \lemda_m =m*pi/b%%%%%%
for j=1:M
m(j)=(pi*(j-1))/b;
end
% %%%%%%%%%%%%%%%%%%%%% Define matrix A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(M,N);
A(1,1) = (cosh(wk*h)*sinh(wk*b))/(wk*b*(2*wk*h+sinh(2*wk*h)))*(besselh(l, wk*RE)) /(dbesselh(l, wk*RE)); % Set A_00
for j = 2:N
A(1,j) =(cos(k(j)*h)*sin(k(j)*b) )/ (k(j)*b*(2*k(j)*h + sin(2*k(j)*h)))*( besselk(l, k(j)*RE) )...
/(dbesselk(l, k(j)*RE)); % Set A_0n
end
for i = 2:M
A(i,1) =(2 * cosh(wk*h) * (-1)^(i-1) * wk*sinh(wk*b)) / (b * (2*wk*h + sinh(2*wk*h))*(wk^2 + m(i)^2))...
* (besselh(l, wk*RE))/ (dbesselh(l, wk*RE)); % Set A_m0
end
for i = 2:M
for j = 2:N
A(i,j) = (2*cos(k(j)*h)*(-1)^(i-1) *k(j)* sin(k(j)*b))/ (b * (2*k(j)*h + sin(2*k(j)*h))*(k(j)^2-m(i)^2))...
*(besselk(l, k(j)*RE)) / (dbesselk(l, k(j)*RE));% Set A_mn
end
end
%%%%%%%%%%%%%%%%%%%%%%%% DefineMatrix B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=zeros(N,M);
B(1,1) = (4*sinh(wk*b)) / (RE * wk*log(RE/RI) *cosh(wk*h)); %set B_00
%%%%%%%%%%%B_0m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(1,j) = Rml_prime_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%%%%%%%%B_n0%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
B(i,1)=(4*sin(k(i)*b))/(RE*k(i)*log(RE/RI)*cos(k(i)*h));% Set B_n0
end
%%%%%%%%%%%%%%%%%%%%%%%%%%B_nm%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
for j=2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(i,j) = Rml_prime_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix C %%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(N,M);
C(1,1) = -4 * sinh(wk*b) / (RE * wk*log(RE/RI) * cosh(wk*h));
% %%%%% DEfine C0m%%%%%%
for j = 2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(1,j) = Rml_prime_star_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
% %%%%%%% Define Cn0%%%%%%
for i = 2:N
C(i,1) = -4 * sin(k(i)*b) / (RE *k(i)* log(RE/RI) * cos(k(i)*h));
end
% % %%%%%% Define Cnm%%%%%%
for i = 2:N
for j =2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(i,j) = Rml_prime_star_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%% write Matrix D %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
D = zeros(M,N);
%%% write D00 %%%%%%
D(1,1) = (cosh(wk*h) * sinh(wk*b)) / (wk*b * (2*wk*h + sinh(2*wk*h))) * (besselj(l, wk*RI))/ (dbesselj(l, wk*RI));
%%%%% write D0n %%%%%%%%%%
for j =2:N
D(1,j) = (cos(k(j)*h) * sin(k(j)*b)) / (k(j)*b * (2*k(j)*h + sin(2*k(j)*h))) * (besseli(l, k(j)*RI) )/ (dbesseli(l, k(j)*RI));
end
%%%%%% write Dm0 %%%%%%%%%
for i = 2:M
D(i,1) = (2 * cosh(wk*h) * (-1)^(i-1) * wk * sinh(wk*b)) /(b * (2*wk*h + sinh(2*wk*h)) * (wk^2 + m(i)^2))...
*(besselj(l, wk*RI) )/(dbesselj(l, wk*RI));
end
%%%%% Define Dmn%%%%%%%%
for i = 2:M
for j = 2:N
D(i,j) = (2 * cos(k(j)*h) * (-1)^(i-1) * k(j) * sin(k(j)*b)) /(b * (2*k(j)*h + sin(2*k(j)*h)) * (k(j)^2 - m(i)^2))...
*(besseli(l, k(j)*RI)) / (dbesseli(l, k(j)*RI));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = zeros(N, M); % Preallocate the matrix E
%%%%% Define E00%%%%%%%%%%%%
E(1,1) = (4 * sinh(wk*b)) / (RI *wk* log(RE/RI) * cosh(wk*h));
%%%% Define Eom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(1,j) = Rml_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
%
end
%%%%%% Define Eno%%%%%%%%%%%%%%
for i = 2:N
E(i,1) = (4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
for i = 2:N
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(i,j) = Rml_prime_RI * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%% Now write matrix F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F = zeros(N,M);
%%%%%%%% Define F00 %%%%%%%%%%
F(1,1) = (-4 * sinh(wk*b)) / (RI * wk*log(RE/RI) * cosh(wk*h));
% %%%%%% Define F0m%%%%
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(1,j) = Rml_star_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%% Defin Fn0%%%%%%
for i = 2:N
F(i,1) = (-4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
%%%%%%% Define Fnm %%%%%%%
for i = 2:N
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(i,j) = Rml_star_prime_RI * (4 * k(i)* (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% % %%%%%%%%%% Write Matrix W %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W = zeros(N,Q);
% %%W_{0q}
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b) via decaying exp
W(1,q) = -(4*chi(q)/cosh(wk*h))*(( wk*sinh(wk*b)*coth_chib - chi(q)*cosh(wk*b) ) / ( wk^2 - chi(q)^2 ) ); %prof.chen
%
% % W(1, q) = - (4 * chi(q) / cosh(wk * h)) * (chi(q) * sinh(chi(q) * b) * cosh(wk * b) - wk * sinh(wk * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 - wk^2) * sinh(chi(q) * b));
end
% % %%% Write W_{nq}
for n = 2:N
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b), stable
W(n,q) = -(4*chi(q)/cos(k(n)*h)) * ...
( ( k(n)*sin(k(n)*b)*coth_chib + chi(q)*cos(k(n)*b) ) ... %prof.chen
/ ( k(n)^2 + chi(q)^2 ) );
% % W(n, q) = - (4 * chi(q) / cos(k(n) * h)) * (chi(q) * sinh(chi(q) * b) * cos(k(n) * b) + k(n) * sin(k(n) * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 + k(n)^2) * sinh(chi(q) * b));
end
end
%%%%%%%%%%%%%%%%%%%%%%%Find E1_{q}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f2 = omega(idx)^2 / g;
E1 = zeros(Q,1);
S_q = zeros(Q,1);
for q = 1:Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% this expression is same as prof. Chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
exp2chi_d = exp(-2 * chi(q) * d); % e^{-2*chi*d}
exp2chi_b = exp(-2 * chi(q) * b); % e^{-2*chi*(h-d)}
exp2chi_h = exp(-2 * chi(q) * h); % e^{-2*chi*h}
exp1chi_d = exp(-chi(q) * d); % e^{-chi*d}
% intermediate ratio (same order as Fortran)
BB = (f2 - chi(q)) * (exp2chi_b / exp2chi_d);
BB = BB + (f2 + chi(q)) * (1 + 2 * exp2chi_b);
BB = BB / (f2 - chi(q) + (f2 + chi(q)) * exp2chi_d);
BB = BB / (1 + exp2chi_b);
% final coefficient
E1(q) = 2 * (BB * exp2chi_d - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This expression is that one derived directly
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % N0, D0, H0 exactly as in the math above
% N0 = (chi(q) - f2) + (chi(q) + f2) * exp2chi_h;
% D0 = (f2 - chi(q)) + (f2 + chi(q)) * exp2chi_d;
% H0 = 1 + exp2chi_b;
%
% % final coefficient (no add/subtract step)
% E1(q) = 2 * N0 / (D0 * H0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This one is the hyperbolic one form
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% num = chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h);
% den = (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*(h - d)); % or: * cosh(chi(q)*b)
% E1(q) = num / den;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% This is the upper region velocity potential at z=0, write
%%%%%%%%%%%%%%%% from prof.chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CCmc = 1 + (exp2chi_b / exp2chi_d) + 2*exp2chi_b;
CCmc = CCmc / (1 + exp2chi_b);
CCmc = BB * (1 + exp2chi_d) - CCmc;
S_q(q) = CCmc * exp1chi_d; % this equals the summand value for this q
% --- direct hyperbolic (exact) ---
% % % C_hyp = ( chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h) ) ...
% % % / ( (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*b) );
% % %
% % % S_hyp(q) = C_hyp * cosh(chi(q)*d) + sinh(chi(q)*h) / cosh(chi(q)*b); % summand
end
% H(q): diagonal term (exponential form)
H1 = zeros(Q,1);
for q = 1:Q
% dissip =
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
mid = 4*r/(1 - r^2) - E1(q); % 2/sinh(2*chi*b) - C_m
H1(q) = mid + 1i*a1(idx)*chi(q)/omega(idx); % mid + i*(a1/w)*chi
end
H = diag(H1);
%%%%%%%%%%matric G%%%%%%%%%%%%%%%%%%
G = zeros(Q, N); % Preallocate
for q = 1:Q
G(q,1) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Z0d ...
* ( chi(q) / (chi(q)^2 - wk^2) )* ( besselj(l, wk*RI) / dbesselj(l, wk*RI) ); % this one is my calculated
end
% %G_qn
for q = 1:Q
for n = 2:N
G(q, n) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Znd(n) ...
* ( chi(q) / (k(n)^2 + chi(q)^2) )* ( besseli(l, k(n)*RI) / dbesseli(l, k(n)*RI) ); % this one is my calculated
end
end
% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %Define the right hand side vector
U = zeros(2*M + 2*N + Q, 1); % Full vector, M+N+M+N+Q elements
% % Block 1: U (size M = 4)
for i = 1:M
if i == 1
U(i, 1) = (sinh(wk*b))/((b*wk)*cosh(wk*h))*besselj(l, wk*RE) ; % Z_0^l
else
U(i, 1) = (2 *wk*(-1)^(i-1)*sinh(wk*b))/(b *(wk^2 +m(i)^2)*cosh(wk*h))*besselj(l, wk*RE); %Z_m^l
end
end
% % Block 2: Y (size N = 3)
for j = 1:N
if j == 1
U(j + M, 1) = -dbesselj(l, wk*RE) * (2*wk*h + sinh(2*wk*h)) /(cosh(wk*h)^2); % Y_0^l
else
U(j + M, 1) = 0; % Y_n^l
end
end
% % Block 3: X (size M = 4)
for i = 1:M
U(i + M + N, 1) = 0; % X_0^l, X_m^l
end
% Block 4: W (size N = 3)
for j = 1:N
U(j + M + N + M, 1) = 0; % W_0^l, W_n^l
end
% % Identity matrices
I_M = eye(M);
I_N = eye(N);
% Zero matrices
ZMM = zeros(M, M);
ZMN = zeros(M, N);
ZNM = zeros(N, M);
ZNN = zeros(N, N);
ZMQ = zeros(M,Q);
ZNQ = zeros(N,Q);
ZQM = zeros(Q,M);
ZQN = zeros(Q,N);
% Construct the full block matrix S
S = [ I_M, -A, ZMM, ZMN, ZMQ;
-B, I_N, -C, ZNN, ZNQ;
ZMM, ZMN, I_M, -D, ZMQ;
-E, ZNN, -F, I_N, -W;
ZQM, ZQN, ZQM, -G, H ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
converged = false;
psi = zeros(Q,1);
T_old = []; % <-- track the full solution from prev. iter
% T_old = zeros(2*M + 2*N + Q, 1); % previous unknowns (seed)
for iter = 1:max_iter
% (A) overwrite ONLY Block 5 of U from current psi
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI))) * psi(q);
end
T = S \ U; % Solve the linear system
% T = pinv(S) * U; % Use pseudoinverse for stability
b_vec = T(1:M); % Coefficients b^l
a_vec = T(M+1 : M+N); % Coefficients a^l
c_vec = T(M+N+1 : 2*M+N); % Coefficients c^l
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
% (D) update psi for NEXT iteration from CURRENT coefficients
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
psi(q) = integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
% % % drawnow; % optional: flush output each iter
% === compact per-iteration print, only for T in [5,35] ===
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('idx %3d | iter %2d | ||psi|| = %.3e\n', idx, iter, norm(psi));
% drawnow;
% end
% % % % (E) convergence on ALL unknowns (T vs previous T)
% --- per-iteration diagnostics (optional) ---
if ~isempty(T_old)
diff_T = max(abs(T - T_old));
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('k0 idx %3d | iter %2d: max|ΔT| = %.3e, ||psi|| = %.3e\n', ...
% idx, iter, diff_T, norm(psi));
% drawnow; % ← add this to flush each iteration line too
% end
if diff_T < tol
converged = true;
break
end
end
T_old = T;
end % <<< end of iter loop
% % ---- ONE summary line per frequency (place it here) ----
% iters_used(idx) = iter; % how many iterations this frequency needed
% fprintf('idx %3d (T=%6.3f s): iters=%2d\n', idx, 2*pi/omega(idx), iter);
% drawnow;
% -------------- end nonlinear iteration --------------
% % %%%%%%%%% Wave motion%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
term1 = (d_vec(1)*cosh(wk*h)^2) / ((2*wk*h + sinh(2*wk*h)) * dbesselj(l, wk*RI));
sum1 = 0;
for n =2:N
sum1 = sum1 + d_vec(n)*cos(k(n)*h)^2/ ((2*k(n)*h + sin(2*k(n)*h))* dbesseli(l, k(n)*RI));
end
phiUell = 0;
for q =1:Q
phiUell = phiUell +e_vec(q)* S_q(q);
end
eta0(idx) = abs(term1+sum1+phiUell);
end
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % Plotting Data
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% figure(2); clf;
% >>> CHANGES START (3): one figure = two taus + Dr. Chen only
% plot(2*pi./omega, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
plot(omega.^2 * RE / g, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
hold on; % Add extra plots on same figure
% % % %
% % % % % Now plot the 3 CSV experimental points
% scatter(data_chen(:,1), data_chen(:,2), 30, 'r', 'o', 'filled');
% % scatter(data_liu(:,1), data_liu(:,2), 30, 'g', 's', 'filled');
% scatter(data_exp(:,1), data_exp(:,2), 30, 'b', '^', 'filled');
xlabel('$T$', 'Interpreter', 'latex');
ylabel('$|\eta / (iA)|$', 'Interpreter', 'latex');
title('Wave motion amplitude for $R_E = 138$', 'Interpreter', 'latex');
legend({'$\tau=0.2$','Model test'}, ...
'Interpreter','latex','Location','northwest');
grid on;
% xlim([5 35]); % Match the reference plot
% ylim([0 4.5]); % Optional: based on expected peak height
xlim([0 4]); % Match the reference plot
ylim([0 7]); % Optional: based on expected peak height
% === plotting section ===
% diary off
elapsedTime = toc;
disp(['Time consuming = ', num2str(elapsedTime), ' s']);
function out = dbesselk(l, z)
%DBESSELK Derivative of the modified Bessel function of the second kind
% out = dbesselk(l, z)
% Returns d/dz [K_l(z)] using the recurrence formula:
% K_l'(z) = -0.5 * (K_{l-1}(z) + K_{l+1}(z))
out = -0.5 * (besselk(l-1, z) + besselk(l+1, z));
end
function out = dbesselj(l, z)
%DBESSELJ Derivative of the Bessel function of the first kind
% out = dbesselj(l, z)
% Returns d/dz [J_l(z)] using the recurrence formula:
% J_l'(z) = 0.5 * (J_{l-1}(z) - J_{l+1}(z))
out = 0.5 * (besselj(l-1, z) - besselj(l+1, z));
end
function out = dbesseli(l, z)
%DBESSELI Derivative of the modified Bessel function of the first kind
% out = dbesseli(l, z)
% Returns d/dz [I_l(z)] using the recurrence formula:
% I_l'(z) = 0.5 * (I_{l-1}(z) + I_{l+1}(z))
out = 0.5 * (besseli(l-1, z) + besseli(l+1, z));
end
function out = dbesselh(l, z)
%DBESSELH Derivative of the Hankel function of the first kind
% out = dbesselh(l, z)
% Returns d/dz [H_l^{(1)}(z)] using the recurrence formula:
% H_l^{(1)'}(z) = 0.5 * (H_{l-1}^{(1)}(z) - H_{l+1}^{(1)}(z))
out = 0.5 * (besselh(l-1, 1, z) - besselh(l+1, 1, z));
end
function x = bessel0j(l,q,opt)
% a row vector of the first q roots of bessel function Jl(x), integer order.
% if opt = 'd', row vector of the first q roots of dJl(x)/dx, integer order.
% if opt is not provided, the default is zeros of Jl(x).
% all roots are positive, except when l=0,
% x=0 is included as a root of dJ0(x)/dx (standard convention).
%
% starting point for for zeros of Jl was borrowed from Cleve Moler,
% but the starting points for both Jl and Jl' can be found in
% Abramowitz and Stegun 9.5.12, 9.5.13.
%
% David Goodmanson
%
% x = bessel0j(l,q,opt)
k = 1:q;
if nargin==3 && opt=='d'
beta = (k + l/2 - 3/4)*pi;
mu = 4*l^2;
x = beta - (mu+3)./(8*beta) - 4*(7*mu^2+82*mu-9)./(3*(8*beta).^3);
for j=1:8
xnew = x - besseljd(l,x)./ ...
(besselj(l,x).*((l^2./x.^2)-1) -besseljd(l,x)./x);
x = xnew;
end
if l==0
x(1) = 0; % correct a small numerical difference from 0
end
else
beta = (k + l/2 - 1/4)*pi;
mu = 4*l^2;
x = beta - (mu-1)./(8*beta) - 4*(mu-1)*(7*mu-31)./(3*(8*beta).^3);
for j=1:8
xnew = x - besselj(l,x)./besseljd(l,x);
x = xnew;
end
end
end
% --- Local helper function for derivative of Bessel function ---
function dJ = besseljd(l, x)
dJ = 0.5 * (besselj(l - 1, x) - besselj(l + 1, x));
end
function v_D_val = v_D(N, Q, r, Z0d, wk, RI, l, d_vec, Znd, k, e_vec, chi)
% n = 0 mode
term1 = (d_vec(1) * Z0d * besselj(l, wk*r)) / (dbesselj(l, wk*RI));
% n >= 2 evanescent sum
sum1 = 0;
for nidx = 2:N
sum1 = sum1 + d_vec(nidx) * Znd(nidx) * besseli(l, k(nidx)*r) ...
/( dbesseli(l, k(nidx)*RI));
end
% q = 1..Q radial sum
sum2 = 0;
for qidx = 1:Q
sum2 = sum2 + e_vec(qidx) *chi(qidx)* besselj(l, chi(qidx)*r) / dbesselj(l, chi(qidx)*RI);
end
v_D_val = term1 + sum1 + sum2;
end
  10 Kommentare
Javeria
Javeria am 8 Dez. 2025 um 13:05
@Walter Roberson@Sam Chak what i have that we need to treat this non linear term iteratively to solve our system of equation;
The principle of iteration is the same. You may go in another way: 1) assuming your coefficient b1=0, you should have everything including v_D(r);
2) using a new a’( r)=a+b|v_D( r)| in place of a to solve all equations to get a new v_D( r); 3) to check the new v_D with previous one, if the difference is larger than your tolerance, continue the step 2).
David Goodmanson
David Goodmanson vor 33 Minuten
Hi Sam, thanks for mentioning that I wrote a piece of the code, which I posted to Javeria on a previous thread. Javeria, if you see this, you can use the bessel0j code as you see fit but the nitpicky part of my nature wishes you had let the variabIe n (the bessel function order) alone, instead of changing it to l (small L). It's just a detail but in code generally, there are too many fonts where small L and capital i and the number 1 can be confused.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Torsten
Torsten am 9 Dez. 2025 um 1:51
Bearbeitet: Torsten am 9 Dez. 2025 um 1:54
Although it's slow, the full Newton method seems to work in this case (except for one value of X_kRE):
clear all;
close all;
clc;
tic;
% diary('iter_log.txt');
% diary on
% fprintf('Run started: %s\n', datestr(now));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters from your setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
old = false;
if old
N = 20; % Number of N modes
M = 20; % Number of M modes
Q = 20; % Number of Q modes
RI = 34.5; % Inner radius (m)
RE = 47.5; % Outer radius (m)
h = 200; % Water depth (m) % Interface depth (m)
d = 38; % Interface depth (m) % Draft (m)
tau = 0.1; % porosity ratio
X_kRE = linspace(0.0025, 0.16,100); %%%%%% this is now k_0
else
N = 10; % Number of N modes
M = 10; % Number of M modes
Q = 10; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
h = 1.0; % Water depth (m) % Interface depth (m)
d = 0.3; % Interface depth (m) % Draft (m)
tau = 0.2; % porosity ratio
X_kRE = linspace(0.05, 4.5, 40); %%%%%% this is now k_0
end
b = h-d; % Distance from cylinder bottom to seabed (m)
g = 9.81; % Gravity (m/s^2)
gamma = 1.0; % discharge coefficient
b1 = (1 - tau) / (2 * gamma * tau^2); % nonlinear coeff
tol = 1e-4; % convergence tolerance
max_iter = 100; % max iterations
l = 0; % Azimuthal order
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% === Compute Bessel roots and scaled chi values ===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
roots = bessel0j(l, Q); % Zeros of J_l(x)
chi = roots ./ RI; % chi_q^l = roots scaled by radius
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ==============Initialize eta0 array before loop
%===============Initialize omega array before loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eta0 = zeros(size(X_kRE)); % Preallocate
omega = zeros(size(X_kRE)); %%%% omega preallocate
% iters_used = zeros(length(X_kRE),1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for idx = 1:length(X_kRE)
wk = X_kRE(idx); % dimensional wavenumber
omega(idx) = sqrt(g * wk * tanh(wk * h)); % dispersion relation
% fprintf('\n--- idx %3d (T=%6.3f s) ---\n', idx, 2*pi/omega(idx));
% drawnow;
%%%%%%%%%%%%% Compute group velocity %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cg(idx) = (g * tanh(wk * h) + g * wk * h * (sech(wk * h))^2) ...
* omega(idx) / (2 * g * wk * tanh(wk * h));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% =======Compute a1 based on tau
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a1(idx) = 0.93 * (1 - tau) * Cg(idx);
% dissip(idx) = a1(idx)/omega(idx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=============== Find derivative of Z0 at z = -d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z0d = (cosh(wk * h) * wk * sinh(wk * b)) / (2 * wk * h + sinh(2 * wk * h));
fun_alpha = @(x) omega(idx)^2 + g*x.*tan(x*h); %dispersion equation for evanescent modes
opts_lsq = optimset('Display','none'); % ← add this
%opts_lsq = [];
for n = 1:N
if n == 1
k(n) = -1i * wk;
else
x0_left = (2*n - 3) * pi / (2*h);
x0_right = (2*n - 1) * pi / (2*h);
guess = (x0_left + x0_right)/2;
% Use lsqnonlin for better convergence
k(n) = lsqnonlin(fun_alpha, guess, x0_left, x0_right,opts_lsq);
%%%%%%%%%%%%% Derivative of Z_n at z = -d %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Znd(n) = -k(n) * (cos(k(n)*h) * sin(k(n)*b)) / (2*k(n)*h + sin(2*k(n)*h));
end
end
%% finding the root \lemda_m =m*pi/b%%%%%%
for j=1:M
m(j)=(pi*(j-1))/b;
end
% %%%%%%%%%%%%%%%%%%%%% Define matrix A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(M,N);
A(1,1) = (cosh(wk*h)*sinh(wk*b))/(wk*b*(2*wk*h+sinh(2*wk*h)))*(besselh(l, wk*RE)) /(dbesselh(l, wk*RE)); % Set A_00
for j = 2:N
A(1,j) =(cos(k(j)*h)*sin(k(j)*b) )/ (k(j)*b*(2*k(j)*h + sin(2*k(j)*h)))*( besselk(l, k(j)*RE) )...
/(dbesselk(l, k(j)*RE)); % Set A_0n
end
for i = 2:M
A(i,1) =(2 * cosh(wk*h) * (-1)^(i-1) * wk*sinh(wk*b)) / (b * (2*wk*h + sinh(2*wk*h))*(wk^2 + m(i)^2))...
* (besselh(l, wk*RE))/ (dbesselh(l, wk*RE)); % Set A_m0
end
for i = 2:M
for j = 2:N
A(i,j) = (2*cos(k(j)*h)*(-1)^(i-1) *k(j)* sin(k(j)*b))/ (b * (2*k(j)*h + sin(2*k(j)*h))*(k(j)^2-m(i)^2))...
*(besselk(l, k(j)*RE)) / (dbesselk(l, k(j)*RE));% Set A_mn
end
end
%%%%%%%%%%%%%%%%%%%%%%%% DefineMatrix B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=zeros(N,M);
B(1,1) = (4*sinh(wk*b)) / (RE * wk*log(RE/RI) *cosh(wk*h)); %set B_00
%%%%%%%%%%%B_0m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(1,j) = Rml_prime_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%%%%%%%%B_n0%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
B(i,1)=(4*sin(k(i)*b))/(RE*k(i)*log(RE/RI)*cos(k(i)*h));% Set B_n0
end
%%%%%%%%%%%%%%%%%%%%%%%%%%B_nm%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
for j=2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(i,j) = Rml_prime_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix C %%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(N,M);
C(1,1) = -4 * sinh(wk*b) / (RE * wk*log(RE/RI) * cosh(wk*h));
% %%%%% DEfine C0m%%%%%%
for j = 2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(1,j) = Rml_prime_star_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
% %%%%%%% Define Cn0%%%%%%
for i = 2:N
C(i,1) = -4 * sin(k(i)*b) / (RE *k(i)* log(RE/RI) * cos(k(i)*h));
end
% % %%%%%% Define Cnm%%%%%%
for i = 2:N
for j =2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(i,j) = Rml_prime_star_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%% write Matrix D %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
D = zeros(M,N);
%%% write D00 %%%%%%
D(1,1) = (cosh(wk*h) * sinh(wk*b)) / (wk*b * (2*wk*h + sinh(2*wk*h))) * (besselj(l, wk*RI))/ (dbesselj(l, wk*RI));
%%%%% write D0n %%%%%%%%%%
for j =2:N
D(1,j) = (cos(k(j)*h) * sin(k(j)*b)) / (k(j)*b * (2*k(j)*h + sin(2*k(j)*h))) * (besseli(l, k(j)*RI) )/ (dbesseli(l, k(j)*RI));
end
%%%%%% write Dm0 %%%%%%%%%
for i = 2:M
D(i,1) = (2 * cosh(wk*h) * (-1)^(i-1) * wk * sinh(wk*b)) /(b * (2*wk*h + sinh(2*wk*h)) * (wk^2 + m(i)^2))...
*(besselj(l, wk*RI) )/(dbesselj(l, wk*RI));
end
%%%%% Define Dmn%%%%%%%%
for i = 2:M
for j = 2:N
D(i,j) = (2 * cos(k(j)*h) * (-1)^(i-1) * k(j) * sin(k(j)*b)) /(b * (2*k(j)*h + sin(2*k(j)*h)) * (k(j)^2 - m(i)^2))...
*(besseli(l, k(j)*RI)) / (dbesseli(l, k(j)*RI));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = zeros(N, M); % Preallocate the matrix E
%%%%% Define E00%%%%%%%%%%%%
E(1,1) = (4 * sinh(wk*b)) / (RI *wk* log(RE/RI) * cosh(wk*h));
%%%% Define Eom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(1,j) = Rml_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
%
end
%%%%%% Define Eno%%%%%%%%%%%%%%
for i = 2:N
E(i,1) = (4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
for i = 2:N
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(i,j) = Rml_prime_RI * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%% Now write matrix F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F = zeros(N,M);
%%%%%%%% Define F00 %%%%%%%%%%
F(1,1) = (-4 * sinh(wk*b)) / (RI * wk*log(RE/RI) * cosh(wk*h));
% %%%%%% Define F0m%%%%
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(1,j) = Rml_star_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%% Defin Fn0%%%%%%
for i = 2:N
F(i,1) = (-4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
%%%%%%% Define Fnm %%%%%%%
for i = 2:N
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(i,j) = Rml_star_prime_RI * (4 * k(i)* (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% % %%%%%%%%%% Write Matrix W %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W = zeros(N,Q);
% %%W_{0q}
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b) via decaying exp
W(1,q) = -(4*chi(q)/cosh(wk*h))*(( wk*sinh(wk*b)*coth_chib - chi(q)*cosh(wk*b) ) / ( wk^2 - chi(q)^2 ) ); %prof.chen
%
% % W(1, q) = - (4 * chi(q) / cosh(wk * h)) * (chi(q) * sinh(chi(q) * b) * cosh(wk * b) - wk * sinh(wk * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 - wk^2) * sinh(chi(q) * b));
end
% % %%% Write W_{nq}
for n = 2:N
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b), stable
W(n,q) = -(4*chi(q)/cos(k(n)*h)) * ...
( ( k(n)*sin(k(n)*b)*coth_chib + chi(q)*cos(k(n)*b) ) ... %prof.chen
/ ( k(n)^2 + chi(q)^2 ) );
% % W(n, q) = - (4 * chi(q) / cos(k(n) * h)) * (chi(q) * sinh(chi(q) * b) * cos(k(n) * b) + k(n) * sin(k(n) * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 + k(n)^2) * sinh(chi(q) * b));
end
end
%%%%%%%%%%%%%%%%%%%%%%%Find E1_{q}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f2 = omega(idx)^2 / g;
E1 = zeros(Q,1);
S_q = zeros(Q,1);
for q = 1:Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% this expression is same as prof. Chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
exp2chi_d = exp(-2 * chi(q) * d); % e^{-2*chi*d}
exp2chi_b = exp(-2 * chi(q) * b); % e^{-2*chi*(h-d)}
exp2chi_h = exp(-2 * chi(q) * h); % e^{-2*chi*h}
exp1chi_d = exp(-chi(q) * d); % e^{-chi*d}
% intermediate ratio (same order as Fortran)
BB = (f2 - chi(q)) * (exp2chi_b / exp2chi_d);
BB = BB + (f2 + chi(q)) * (1 + 2 * exp2chi_b);
BB = BB / (f2 - chi(q) + (f2 + chi(q)) * exp2chi_d);
BB = BB / (1 + exp2chi_b);
% final coefficient
E1(q) = 2 * (BB * exp2chi_d - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This expression is that one derived directly
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % N0, D0, H0 exactly as in the math above
% N0 = (chi(q) - f2) + (chi(q) + f2) * exp2chi_h;
% D0 = (f2 - chi(q)) + (f2 + chi(q)) * exp2chi_d;
% H0 = 1 + exp2chi_b;
%
% % final coefficient (no add/subtract step)
% E1(q) = 2 * N0 / (D0 * H0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This one is the hyperbolic one form
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% num = chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h);
% den = (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*(h - d)); % or: * cosh(chi(q)*b)
% E1(q) = num / den;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% This is the upper region velocity potential at z=0, write
%%%%%%%%%%%%%%%% from prof.chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CCmc = 1 + (exp2chi_b / exp2chi_d) + 2*exp2chi_b;
CCmc = CCmc / (1 + exp2chi_b);
CCmc = BB * (1 + exp2chi_d) - CCmc;
S_q(q) = CCmc * exp1chi_d; % this equals the summand value for this q
% --- direct hyperbolic (exact) ---
% % % C_hyp = ( chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h) ) ...
% % % / ( (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*b) );
% % %
% % % S_hyp(q) = C_hyp * cosh(chi(q)*d) + sinh(chi(q)*h) / cosh(chi(q)*b); % summand
end
% H(q): diagonal term (exponential form)
H1 = zeros(Q,1);
for q = 1:Q
% dissip =
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
mid = 4*r/(1 - r^2) - E1(q); % 2/sinh(2*chi*b) - C_m
H1(q) = mid + 1i*a1(idx)*chi(q)/omega(idx); % mid + i*(a1/w)*chi
end
H = diag(H1);
%%%%%%%%%%matric G%%%%%%%%%%%%%%%%%%
G = zeros(Q, N); % Preallocate
for q = 1:Q
G(q,1) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Z0d ...
* ( chi(q) / (chi(q)^2 - wk^2) )* ( besselj(l, wk*RI) / dbesselj(l, wk*RI) ); % this one is my calculated
end
% %G_qn
for q = 1:Q
for n = 2:N
G(q, n) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Znd(n) ...
* ( chi(q) / (k(n)^2 + chi(q)^2) )* ( besseli(l, k(n)*RI) / dbesseli(l, k(n)*RI) ); % this one is my calculated
end
end
% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %Define the right hand side vector
U = zeros(2*M + 2*N + Q, 1); % Full vector, M+N+M+N+Q elements
% % Block 1: U (size M = 4)
for i = 1:M
if i == 1
U(i, 1) = (sinh(wk*b))/((b*wk)*cosh(wk*h))*besselj(l, wk*RE) ; % Z_0^l
else
U(i, 1) = (2 *wk*(-1)^(i-1)*sinh(wk*b))/(b *(wk^2 +m(i)^2)*cosh(wk*h))*besselj(l, wk*RE); %Z_m^l
end
end
% % Block 2: Y (size N = 3)
for j = 1:N
if j == 1
U(j + M, 1) = -dbesselj(l, wk*RE) * (2*wk*h + sinh(2*wk*h)) /(cosh(wk*h)^2); % Y_0^l
else
U(j + M, 1) = 0; % Y_n^l
end
end
% % Block 3: X (size M = 4)
for i = 1:M
U(i + M + N, 1) = 0; % X_0^l, X_m^l
end
% Block 4: W (size N = 3)
for j = 1:N
U(j + M + N + M, 1) = 0; % W_0^l, W_n^l
end
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI)));
end
% % Identity matrices
I_M = eye(M);
I_N = eye(N);
% Zero matrices
ZMM = zeros(M, M);
ZMN = zeros(M, N);
ZNM = zeros(N, M);
ZNN = zeros(N, N);
ZMQ = zeros(M,Q);
ZNQ = zeros(N,Q);
ZQM = zeros(Q,M);
ZQN = zeros(Q,N);
% Construct the full block matrix S
S = [ I_M, -A, ZMM, ZMN, ZMQ;
-B, I_N, -C, ZNN, ZNQ;
ZMM, ZMN, I_M, -D, ZMQ;
-E, ZNN, -F, I_N, -W;
ZQM, ZQN, ZQM, -G, H ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
solution_method = 0;
if solution_method == 0
if idx==1
psi0 = zeros(Q,1);
else
if exitflag == 1
psi0 = psi;
else
psi0 = zeros(Q,1);
end
end
f = @(psi)fun(psi,M,N,Q,S,U,Z0d,wk,RI,l,Znd,k,chi);
[psi,~,exitflag] = fsolve(f,psi0,optimset('Display','none'));
[~,d_vec,e_vec] = f(psi);
elseif solution_method == 1
converged = false;
psi = zeros(Q,1);
T_old = []; % <-- track the full solution from prev. iter
% T_old = zeros(2*M + 2*N + Q, 1); % previous unknowns (seed)
for iter = 1:max_iter
% (A) overwrite ONLY Block 5 of U from current psi
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI))) * psi(q);
end
T = S \ U; % Solve the linear system
% T = pinv(S) * U; % Use pseudoinverse for stability
b_vec = T(1:M); % Coefficients b^l
a_vec = T(M+1 : M+N); % Coefficients a^l
c_vec = T(M+N+1 : 2*M+N); % Coefficients c^l
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
% (D) update psi for NEXT iteration from CURRENT coefficients
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
psi(q) = integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
% % % drawnow; % optional: flush output each iter
% === compact per-iteration print, only for T in [5,35] ===
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('idx %3d | iter %2d | ||psi|| = %.3e\n', idx, iter, norm(psi));
% drawnow;
% end
% % % % (E) convergence on ALL unknowns (T vs previous T)
% --- per-iteration diagnostics (optional) ---
if ~isempty(T_old)
diff_T = max(abs(T - T_old));
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('k0 idx %3d | iter %2d: max|ΔT| = %.3e, ||psi|| = %.3e\n', ...
% idx, iter, diff_T, norm(psi));
% drawnow; % ← add this to flush each iteration line too
% end
if diff_T < tol
converged = true;
break
end
end
T_old = T;
end % <<< end of iter loop
end
if solution_method==0
exitflag
elseif solution_method==1
converged
end
%T
% % ---- ONE summary line per frequency (place it here) ----
% iters_used(idx) = iter; % how many iterations this frequency needed
% fprintf('idx %3d (T=%6.3f s): iters=%2d\n', idx, 2*pi/omega(idx), iter);
% drawnow;
% -------------- end nonlinear iteration --------------
% % %%%%%%%%% Wave motion%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
term1 = (d_vec(1)*cosh(wk*h)^2) / ((2*wk*h + sinh(2*wk*h)) * dbesselj(l, wk*RI));
sum1 = 0;
for n =2:N
sum1 = sum1 + d_vec(n)*cos(k(n)*h)^2/ ((2*k(n)*h + sin(2*k(n)*h))* dbesseli(l, k(n)*RI));
end
phiUell = 0;
for q =1:Q
phiUell = phiUell +e_vec(q)* S_q(q);
end
eta0(idx) = abs(term1+sum1+phiUell);
end
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % Plotting Data
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% figure(2); clf;
% >>> CHANGES START (3): one figure = two taus + Dr. Chen only
%if old
%plot(2*pi./omega, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
%else
plot(omega.^2 * RE / g, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
%end
hold on; % Add extra plots on same figure
% % % %
% % % % % Now plot the 3 CSV experimental points
% scatter(data_chen(:,1), data_chen(:,2), 30, 'r', 'o', 'filled');
% % scatter(data_liu(:,1), data_liu(:,2), 30, 'g', 's', 'filled');
% scatter(data_exp(:,1), data_exp(:,2), 30, 'b', '^', 'filled');
xlabel('$T$', 'Interpreter', 'latex');
ylabel('$|\eta / (iA)|$', 'Interpreter', 'latex');
title('Wave motion amplitude for $R_E = 138$', 'Interpreter', 'latex');
legend({'$\tau=0.2$','Model test'}, ...
'Interpreter','latex','Location','northwest');
grid on;
% xlim([5 35]); % Match the reference plot
% ylim([0 4.5]); % Optional: based on expected peak height
%xlim([0 4]); % Match the reference plot
% ylim([0 7]); % Optional: based on expected peak height
% === plotting section ===
% diary off
elapsedTime = toc;
disp(['Time consuming = ', num2str(elapsedTime), ' s']);
function [res,d_vec,e_vec] = fun(psi,M,N,Q,S,U,Z0d,wk,RI,l,Znd,k,chi)
for q = 1:Q
U(2*M + 2*N + q) = U(2*M + 2*N + q) * psi(q);
end
T = S\U;
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
res(q) = psi(q) - integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
end
function out = dbesselk(l, z)
%DBESSELK Derivative of the modified Bessel function of the second kind
% out = dbesselk(l, z)
% Returns d/dz [K_l(z)] using the recurrence formula:
% K_l'(z) = -0.5 * (K_{l-1}(z) + K_{l+1}(z))
out = -0.5 * (besselk(l-1, z) + besselk(l+1, z));
end
function out = dbesselj(l, z)
%DBESSELJ Derivative of the Bessel function of the first kind
% out = dbesselj(l, z)
% Returns d/dz [J_l(z)] using the recurrence formula:
% J_l'(z) = 0.5 * (J_{l-1}(z) - J_{l+1}(z))
out = 0.5 * (besselj(l-1, z) - besselj(l+1, z));
end
function out = dbesseli(l, z)
%DBESSELI Derivative of the modified Bessel function of the first kind
% out = dbesseli(l, z)
% Returns d/dz [I_l(z)] using the recurrence formula:
% I_l'(z) = 0.5 * (I_{l-1}(z) + I_{l+1}(z))
out = 0.5 * (besseli(l-1, z) + besseli(l+1, z));
end
function out = dbesselh(l, z)
%DBESSELH Derivative of the Hankel function of the first kind
% out = dbesselh(l, z)
% Returns d/dz [H_l^{(1)}(z)] using the recurrence formula:
% H_l^{(1)'}(z) = 0.5 * (H_{l-1}^{(1)}(z) - H_{l+1}^{(1)}(z))
out = 0.5 * (besselh(l-1, 1, z) - besselh(l+1, 1, z));
end
function x = bessel0j(l,q,opt)
% a row vector of the first q roots of bessel function Jl(x), integer order.
% if opt = 'd', row vector of the first q roots of dJl(x)/dx, integer order.
% if opt is not provided, the default is zeros of Jl(x).
% all roots are positive, except when l=0,
% x=0 is included as a root of dJ0(x)/dx (standard convention).
%
% starting point for for zeros of Jl was borrowed from Cleve Moler,
% but the starting points for both Jl and Jl' can be found in
% Abramowitz and Stegun 9.5.12, 9.5.13.
%
% David Goodmanson
%
% x = bessel0j(l,q,opt)
k = 1:q;
if nargin==3 && opt=='d'
beta = (k + l/2 - 3/4)*pi;
mu = 4*l^2;
x = beta - (mu+3)./(8*beta) - 4*(7*mu^2+82*mu-9)./(3*(8*beta).^3);
for j=1:8
xnew = x - besseljd(l,x)./ ...
(besselj(l,x).*((l^2./x.^2)-1) -besseljd(l,x)./x);
x = xnew;
end
if l==0
x(1) = 0; % correct a small numerical difference from 0
end
else
beta = (k + l/2 - 1/4)*pi;
mu = 4*l^2;
x = beta - (mu-1)./(8*beta) - 4*(mu-1)*(7*mu-31)./(3*(8*beta).^3);
for j=1:8
xnew = x - besselj(l,x)./besseljd(l,x);
x = xnew;
end
end
end
% --- Local helper function for derivative of Bessel function ---
function dJ = besseljd(l, x)
dJ = 0.5 * (besselj(l - 1, x) - besselj(l + 1, x));
end
function v_D_val = v_D(N, Q, r, Z0d, wk, RI, l, d_vec, Znd, k, e_vec, chi)
% n = 0 mode
term1 = (d_vec(1) * Z0d * besselj(l, wk*r)) / (dbesselj(l, wk*RI));
% n >= 2 evanescent sum
sum1 = 0;
for nidx = 2:N
sum1 = sum1 + d_vec(nidx) * Znd(nidx) * besseli(l, k(nidx)*r) ...
/( dbesseli(l, k(nidx)*RI));
end
% q = 1..Q radial sum
sum2 = 0;
for qidx = 1:Q
sum2 = sum2 + e_vec(qidx) *chi(qidx)* besselj(l, chi(qidx)*r) / dbesselj(l, chi(qidx)*RI);
end
v_D_val = term1 + sum1 + sum2;
end
  32 Kommentare
Javeria
Javeria vor etwa 7 Stunden
@Torsten i just give M=N=Q=50 and tested for the small case
nXsteps = 5;
X_kRE=X_kRE(1:6);
and i have the following .
Elapsed time is 8316.962963 seconds.
Javeria
Javeria vor etwa eine Stunde
@Torsten i run your code with the following setup
main()
function main
tic
%warning('off')
solution_method = 2; % -4: Fixed-point iteration (full-T-based) (unstable, not recommended)
% -3: Fixed-point iteration (medium-T-based) (unstable, not recommended)
% -2: Fixed-point iteration (minimal-T-based) (unstable, not recommended)
% -1: Fixed-point iteration (psi-based) (unstable, not recommended)
% 0: Fixed-point iteration (Ali) (unstable, not recommended)
% 1: Newton method (psi-based)
% 2: Newton method (minimal-T-based)
% 3: Newton method (medium-T-based) (too slow, not recommended)
% 4: Newton method (full-T-based) (too slow, not recommended)
solver_method = 12; % if solution_method > 0:
% 11: Use self-programmed Newton method to solve the nonlinear
% complex-valued system of equations directly
% 12: Use self-programmed Newton method to solve the nonlinear
% complex-valued system of equations by splitting in real and imaginary part
% 21: Use "fsolve" to solve the nonlinear complex-valued system
% of equations directly
% 22: Use "fsolve" to solve the nonlinear complex-valued system
% of equations by splitting in real and imaginary part
% if solution_method < 0:
% 11 or 21 : Iterate the complex-valued solution vector
% 12 or 22 : Iterate the real and complex parts of the
% solution vector separately
% Used if solution_method > 0 & solver_method = 11 or 12:
TolX = 1e-6; % if solver_method = 2: Error tolerance in iterate
TolF = 1e-6; % if solver_method = 2: Error tolerance in function value
itermax = 50; % if solver_method = 2: Maximum number of Newton iterations
% Used if solution_method > 0 & solver_method = 21 or 22:
TolX_nleq = 1e-6; % Error tolerance in iterate (default value: 1e-6)
TolFun_nleq = 1e-6; % Error tolerance in function value (default value: 1e-6)
MaxIter_nleq = 400; % Maximum number of Newton iterations (default value: 400)
MaxFunEvals_nleq = []; % Maximum number of function evaluations (default value: [])
AutoScaling_nleq = 'off'; % default value: 'off'
ComplexEqn_nleq = 'off'; % default value: 'off'
Updating_nleq = 'off'; % Use Broyden updates to approximate the Jacobian (default value: 'off')
TypicalX_nleq = []; % Typical order of the solution (default value : [])
Jacobian_nleq = 'off'; % User-supplied Jacobian (default value: 'off')
% Used if solution_method = 0
urelax = 1; % Underrelaxation factor
tol = 1e-6; % convergence tolerance
max_iter = 50; % max iterations
% Set integration method
integral_method = 0; % 0: Use integral, 1: Use trapezoidal rule
RelTol_integral = 1e-6; % if integral_method = 0: Relative error tolerance in integral solving (default value: 1e-6)
AbsTol_integral = 1e-10; % if integral_method = 0: Absolute error tolerance in integral solving (default value: 1e-10)
nr = 300; % if integral_method = 1: number of discretization points in r-direction
% Set computational case
old = false;
if old
N = 20; % Number of N modes
M = 20; % Number of M modes
Q = 20; % Number of Q modes
RI = 34.5; % Inner radius (m)
RE = 47.5; % Outer radius (m)
h = 200; % Water depth (m)
d = 38; % Interface depth (m) % Draft (m)
tau = 0.1; % porosity ratio
g = 9.81; % Gravity (m/s^2)
gamma = 1.0; % discharge coefficient
l = 0; % Azimuthal order
X_kRE_min = 0.0025;
X_kRE_max = 0.16; %%%%%% this is now k_0 ;
nXsteps = 100;
stepX = (X_kRE_max-X_kRE_min)/...
nXsteps;
X_kRE = linspace(X_kRE_min,X_kRE_max,nXsteps+1);
stepX_min = stepX/2^6;
else
N = 40; % Number of N modes
M = 40; % Number of M modes
Q = 40; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
h = 1.0; % Water depth (m) % Interface depth (m)
d = 0.3; % Interface depth (m) % Draft (m)
tau = 0.2; % porosity ratio
g = 9.81; % Gravity (m/s^2)
gamma = 1.0; % discharge coefficient
l = 0; % Azimuthal order
X_kRE_min =0.05; %2.0653;%0.05
X_kRE_max = 4.5;%2.5914;%4.5 %%%%%% this is now k_0 ;
% nXsteps = 5;
nXsteps = 40;%160;%40
stepX = (X_kRE_max-X_kRE_min)/...
nXsteps;
X_kRE = linspace(X_kRE_min,X_kRE_max,nXsteps+1);
%X_kRE=X_kRE(1:6);
stepX_min = stepX/2^15;
end
and i get these results attached as png and the time for this simulation is
Elapsed time is 23803.745739 seconds.
>>

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by