Programming wave dispersion equation

51 Ansichten (letzte 30 Tage)
GIULIA
GIULIA am 13 Okt. 2025 um 10:43
Kommentiert: GIULIA am 16 Okt. 2025 um 13:41
Hi everyone,
I am quite new to MATLAB and asking for some help to programme the wave dispersion equation.
ω^2= gktanh(kh)
where
𝑔 is gravity (9.81), ℎ is water depth, and 𝑘 is the wavenumber.
I would like to programme this function using an iterative process, and use it whenever I need to solve it for finding wavelength L, wave period T (2pi/omega)
Could someone please guide me in the process to create it and help further understand the mechanisms of iteration in MATLAB?
Thanks a lot!
  3 Kommentare
GIULIA
GIULIA am 13 Okt. 2025 um 11:01
Yes, solve the equation for k.
And then hopefully understand the process so that I can re-arrange to solve for L and T :)
Sam Chak
Sam Chak am 13 Okt. 2025 um 11:57
If the wave number and the angular frequency ,
then
.
This is an implicit equation because the wavelength λ cannot be defined as a direct function of the other variables.
Try using the solve() command from the Symbolic Math Toolbox, as demonstrated here, before resorting to a numerical approach to solve the problem iteratively.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 13 Okt. 2025 um 12:40
Bearbeitet: Torsten am 13 Okt. 2025 um 12:43
Code taken from
% Parameters
T = 10;
h = 0.2;
g = 9.81;
tolerance = 1e-6;
% Initial guess for L
L0 = T^2/g;
% Fixed point iteration to compute L
Lsol = calculateWavelength(g, h, T, tolerance, L0);
% Plot curve
f = @(L) L - g * T^2 / (2 * pi) * tanh(2 * pi * h ./ L);
L = 1:0.1:20;
hold on
plot(L,f(L))
plot(Lsol,f(Lsol),'o')
hold off
grid on
function L = calculateWavelength(g, h, T, tolerance, L0)
% Iterate until the tolerance is met
while (1)
L = g * T^2 / (2 * pi) * tanh(2 * pi * h / L0);
if (abs(L - L0) < tolerance)
break;
end
L0 = L;
end
end
  2 Kommentare
GIULIA
GIULIA am 13 Okt. 2025 um 16:50
Thanks Torsten!
If i'd have to re-arrange to find T (knowing k and h) would it then be:
f = @(T) 2*pi / sqrt(g*k*tanh(k*h))
tolerance = 1e-6;
function T = calculatePeriod(g, h, tolerance, T0)
% Iterate until the tolerance is met
while (1)
T = (2 * pi) / sqrt(g * k * tanh (k*h));
if (abs(T - T0) < tolerance)
break;
end
T0 = T;
end
end
My questions in that case are:
1) What would I use as initial guess for T (T0)?
2) Can I always use 1e-6 as tolerance?
Torsten
Torsten am 13 Okt. 2025 um 20:05
You can explicitly solve for T:
T = sqrt( 2*pi*L/g * coth(2*pi*h/L) )

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Sam Chak
Sam Chak am 13 Okt. 2025 um 15:44
An approach that directly use the solve() function.
syms lambda positive
% parameters
T = 10;
h = 0.2;
g = 9.81;
% wave dispersion equation
eq = lambda - g*T^2/(2*pi)*tanh(2*pi*h/lambda) == 0
eq = 
sol = solve(eq, lambda)
Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
sol = 
13.988348869027691633555641776592
  3 Kommentare
Sam Chak
Sam Chak am 14 Okt. 2025 um 7:17
Can you perform algebraic operations to rearrange the lambda (λ) equation to isolate the variable T on the left-hand side? This will allow you to verify whether you arrive at the same result as @Torsten in this comment.
GIULIA
GIULIA am 16 Okt. 2025 um 13:41
Right, thank you!

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Partial Differential Equation Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by