Problems with quiver plot
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Lukas
am 27 Aug. 2025
Bearbeitet: David Goodmanson
am 31 Aug. 2025
Hey!
I try to create a quiver plot with unequl axis length. I' like to have the arrows the same length, which somehow does not want to work.
Any ideas?
Thanks!
%% system paramters
eta = .1;
mu = .1;
nu = 1;
gamma = 2;
%% dependent variables
roi = 2;
s = linspace(max([(1-roi)*s_0,0]),(1+roi)*s_0,10);
p = linspace(max([(1-roi)*p_0,0]),(1+roi)*p_0,10);
[s,p] = meshgrid(s,p);
%% gradient flow
v = s.*p.^gamma ./ (1+(1+s).*p.^gamma);
ds = -v + eta;
dp = mu*(v - nu*p);
mag = sqrt(ds.^2 + dp.^2);
arrow_scale = 3E-1;
norm_ds = arrow_scale*ds./mag;
norm_dp = arrow_scale*dp./mag;
%% plot
q = quiver(s,p,norm_ds,norm_dp,'Autoscale','off', 'Color',.6*[1,1,1]);
q.ShowArrowHead = 'off';
q.Marker = '.';
6 Kommentare
David Goodmanson
am 29 Aug. 2025
Bearbeitet: David Goodmanson
am 31 Aug. 2025
Hi Sam, here's the best I could do trying to reproduce the wikipedia plot, including the aspect ratio. The arrows are all normalized to the same value, but at least as importantly the plottting points for quiver are not equally spaced meshgrid values. Rather every x,y quiver point is changed slightly from what meshgrid has. I didn't use 'axis equal' so I guess the vectors are not quite constant length visually.

xx = linspace(-5,5,22);
yy = linspace(-10,10,22);
[x0 y0] = meshgrid(xx,yy);
th = atan(x0.^2-x0-2);
sf = 1/2; % factor to visually reduce the arrow length on the plot
u = sf*cos(th);
v = sf*sin(th);
x = x0 - u/2; % move the center of the arrow to the constant-spaced points
y = y0 - v/2;
figure(1)
quiver(x,y,u,v,'showarrowhead','off','autoscale','off')
ylim([-10 10])
xlim([-10 10])
hold on
x1 = -5:.01:5
y1 = x1.^3/3 -x1.^2/2-2*x1+4;
y2 = x1.^3/3 -x1.^2/2-2*x1;
y3 = x1.^3/3 -x1.^2/2-2*x1-4;
plot(x1,y1,x1,y2,x1,y3)
hold off
Sam Chak
am 30 Aug. 2025
Thank you for your input. It appears that there is no specific parameter to set a constant length for all quiver objects without altering the original magnitudes of the directional components specified by u and v. However, you are absolutely correct that "constant length" representations are visually meaningless if the aspect ratios of the x- and y-axes are not equal.
s_0 = 10; % estimated based on the original image posted by the OP (now removed)
p_0 = 0.1; % estimated based on the original image posted by the OP (now removed)
%% system paramters
eta = .1;
mu = .1;
nu = 1;
gamma = 2;
%% dependent variables
roi = 2;
numArrX = 19; % number of arrows per row
numArrY = 19; % number of arrows per column
s = linspace(max([(1-roi)*s_0,0]), (1+roi)*s_0, numArrX);
p = linspace(max([(1-roi)*p_0,0]), (1+roi)*p_0, numArrY);
[s,p] = meshgrid(s,p);
%% gradient flow
v = s.*p.^gamma./(1 + (1 + s).*p.^gamma);
ds = -v + eta;
dp = mu*(v - nu*p);
mag = sqrt(ds.^2 + dp.^2);
Xarrow_scale = 4E-1;
Yarrow_scale = 1E-1;
norm_ds = Xarrow_scale*ds./mag;
norm_dp = Yarrow_scale*dp./mag;
% Finding the equilibrium point
fun = @(x) [-(x(1).*x(2).^gamma./(1 + (1 + x(1)).*x(2).^gamma)) + eta;
mu*(x(1).*x(2).^gamma./(1 + (1 + x(1)).*x(2).^gamma) - nu*x(2))];
x0 = [11, 1]; % initial guess
eq = fsolve(fun, x0) % equilibrium point
%% plot
l = streamslice(s, p, norm_ds, norm_dp, 0.5, 'noarrows');
set(l, 'Color', "#F63C4C"); % Red Salsa
hold on
q = quiver(s, p, norm_ds, norm_dp, 'off', 'Color', .6*[1,1,1]); % automatic scaling is disabled
q.ShowArrowHead = 'off'; % no arrowheads
q.Marker = '.'; % for the tails
% adding the equilibrium point to the slope field
plot(eq(1), eq(2), 'o', 'markersize', 10, 'linewidth', 1.5, 'Color', "#2F2CE0") % Palatinate Blue
hold off
title('Gradient flow')
xlabel('s')
ylabel('p')
xlim([0 30])
ylim([0 .3])
Akzeptierte Antwort
Matt J
am 27 Aug. 2025
Bearbeitet: Matt J
am 27 Aug. 2025
I think you just need axis equal.
%% system paramters
eta = .1;
mu = .1;
nu = 1;
gamma = 2;
%% dependent variables
roi = 2;
s_0=1; p_0=3; %<---- Matt J chose randomly
s = linspace(max([(1-roi)*s_0,0]),(1+roi)*s_0,10);
p = linspace(max([(1-roi)*p_0,0]),(1+roi)*p_0,10);
[s,p] = meshgrid(s,p);
%% gradient flow
v = s.*p.^gamma ./ (1+(1+s).*p.^gamma);
ds = -v + eta;
dp = mu*(v - nu*p);
mag = sqrt(ds.^2 + dp.^2);
arrow_scale = 3E-1;
norm_ds = arrow_scale*ds./mag;
norm_dp = arrow_scale*dp./mag;
%% plot
q = quiver(s,p,norm_ds,norm_dp,'Autoscale','off', 'Color',.6*[1,1,1]);
q.ShowArrowHead = 'off';
q.Marker = '.';
axis equal %<---- Matt J added
5 Kommentare
Matt J
am 27 Aug. 2025
You're very welcome, but since it works, please Accept-click the answer to indicate so.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Vector Fields finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




