Parallel Matrix Multiplication
21 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mohammad
am 20 Mai 2015
Bearbeitet: Joel Lynch
am 14 Mai 2023
I am looking for a short tutorial/example explaining how we do matrix multiplication in parallel. Note that, the size of matrix is currently 200 * 200 (40000 elements). Thanks.
0 Kommentare
Akzeptierte Antwort
James Tursa
am 20 Mai 2015
The best way to do matrix multiply in MATLAB is to use the * operator, as you normally would. This will call highly optimized BLAS routines that have parallel algorithms in the background as appropriate. If you have sparse matrices, the * operator will call specialized sparse matrix multiply routines. You will be very hard pressed to do better on your own.
4 Kommentare
James Tursa
am 22 Mai 2015
What is it exactly that you want demonstrated? That * is multi-threaded? How to do sparse matrix operations? Or what?
E.g., here is a matrix multiply on a quad core system:
>> a = rand(5000);
>> b = rand(5000);
>> tic;a*b;toc
Elapsed time is 2.307906 seconds.
Here is the same matrix multiply on the same quad core system when starting MATLAB with the -singleCompThread option:
>> a = rand(5000);
>> b = rand(5000);
>> tic;a*b;toc
Elapsed time is 9.796487 seconds.
So the matrix multiply operation * for full matrices is obviously multi-threaded in the background.
And here is a demonstration of taking advantage of sparse matrix multiply:
>> a(a>.01) = 0;
>> sa = sparse(a);
>> b(b>.01) = 0;
>> sb = sparse(b);
>> tic;a*b;toc
Elapsed time is 2.252949 seconds.
>> tic;sa*sb;toc
Elapsed time is 0.433186 seconds.
Joel Lynch
am 14 Mai 2023
Bearbeitet: Joel Lynch
am 14 Mai 2023
"If you have sparse matrices, the * operator will call specialized sparse matrix multiply routines. You will be very hard pressed to do better on your own."
Unfortunately, this statement is highly misleading, if not incorrect. At least as of R2023, sparse matrix multiplication on CPU's are limited to a single thread. James's tests don't show this, but it's easy enough to see:
N = 20000;
density = 0.2;
A = sprand(N,N, density);
b = rand(N, 1);
Nmax_threads = maxNumCompThreads('automatic')
timeit(@() A*b)
maxNumCompThreads(1);
timeit(@() A*b)
It's incredibly suprising, as MKL has supported multithreaded sparse matrix math for quite a while. Until this gets updated, the best best for a large sparse matrix problem is to use gpuArray, even a commercial card can do significantly better.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!