how to simulate mpc controller?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mikail
am 24 Mär. 2025
Kommentiert: Sam Chak
am 28 Apr. 2025
disp('K matrisi:');
disp(K);
disp('B matrisi:');
disp(B);
disp('A matrisi:');
disp(A);
2 Kommentare
Akzeptierte Antwort
Sam Chak
am 24 Mär. 2025
I did not 'beautify' the plot. But the following outlines how you can simulate the LQR-controlled system using the ode45 solver. For simplicity, I used a linear system. While it is also possible to simulate the original nonlinear system, you will need to specify the 12 ODEs individually.
clear all;
clc;
close all;
%---------------------------------Star_X-----------------------------------
%----------------------------- Matematiksel--------------------------------
%-------------------------------modelleme----------------------------------
%--------------------------------------------------------------------------
% **Sayısal değerler**----------------------------------------------------
m_val = 25.0;
Ix_val = 0.25;
Iy_val = 5.28;
Iz_val = 5.28;
theta_val=0;
phi_val=0;
psi_val=0;
g_val = 9.81;
wn_close = 400/2.5;
wn_open = 400/2.5;
dr = 1;
kp=70.779169670332;
ki=40.999999999919;
kd=40.3888999977265;
c=29.33685249238;
d=0;
%--------------------------------------------------------------------------
% **Sembolik değişkenleri tanımla**----------------------------------------
syms u v w p q r phi theta psi Fx Fy Fz L M N t1 t2 t3 h real
syms m Ix Iy Iz g real
syms x1 y1 z1 real
%--------------------------------------------------------------------------
% **Durum değişkenleri**
x = [u; v; w; p; q; r; phi; theta; psi; x1; y1; z1];
% **Girdi vektörü**
u_vec = [Fx; Fy; Fz; L; M; N; t1; t2; t3];
f = [
-g*cos(theta)*cos(psi)+Fx/(m-(0.5*t1 + 0.5*t2 + 0.5*t3))-0.016*u^2-q*w+r*v; %-0.016*(u^2 + v^2 + w^2) - q*w + r*v// (-g*cos(theta)*cos(psi))
-g*(sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi))+(Fy/(m-(0.5*t1 + 0.5*t2 + 0.5*t3)))-0.16*v^2-r*u+ p*w;
-g*(cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi))+(Fz/(m-(0.5*t1 + 0.5*t2 + 0.5*t3)))-0.16*w^2-p*v + q*u;
(L - q*r*(Iz - Iy))/Ix; %- cp*p
(0.16*q^2-M)/Iy; % - cq*q
(0.16*r^2-N)/Iz; % - cr*r
p + (q*sin(phi) + r*cos(phi)) * tan(theta);
q*cos(phi) - r*sin(phi);
(q*sin(phi) + r*cos(phi)) / cos(theta);
u*cos(theta)*cos(psi)+u*cos(theta)*sin(psi)-u*sin(theta);
v*(cos(phi)*cos(psi)-cos(phi)*sin(psi)-sin(psi));
w*(-cos(phi)*cos(theta)+cos(phi)*sin(theta)+sin(phi))
];
% **Jacobian matrislerini hesapla**
A_matrix = jacobian(f, x);
B_matrix = jacobian(f, u_vec);
% **Denge noktaları**
x_equilibrium = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];
u_equilibrium = [0; 0; 0; 0; 0; 0; 0; 0; 0];
% **A ve B matrislerini hesapla**
A_eq = subs(A_matrix, x, x_equilibrium);
A_eq = subs(A_eq, u_vec, u_equilibrium);
A_eq = subs(A_eq, [m, Ix, Iy, Iz, g,phi,theta,psi],[m_val, Ix_val, Iy_val, Iz_val, g_val,phi_val,theta_val,psi_val]);
A = double(A_eq); % Artık tüm değişkenler sayısal, double() çağrılabilir
B_eq = subs(B_matrix, [x; u_vec], [x_equilibrium; u_equilibrium]);
B_eq = subs(B_eq, [m, Ix, Iy, Iz, g,phi,theta,psi],[m_val, Ix_val, Iy_val, Iz_val, g_val,phi_val,theta_val,psi_val]);
B = double(B_eq); % Aynı şekilde B için de double() çağrılabilir
% **Kontrol edilebilirlik matrisi**
controllability = ctrb(A, B);
rank_controllability = rank(controllability);
% **LQR ile Optimal Kontrol Kazancı K Matrisi**
Q = diag([280,14,14,1,6,6,1,1,1,50,115,115]);
R = diag([0.052,0.06,0.06,2,2,2,1,1,1]);
K = lqr(A,B,Q,R);
% **Çıkış ve Direkt Geçiş Matrisleri**
C = eye(12);
D = zeros(12,9);
% **Başlangıç koşulları**
x_init = [0; 0; 0; 0; 0.7; 0.5; 0; 0; 0; 9; 0; 0];
t = 0:0.01:20;
%% ---------------------------------------------------
%% How to simulate the LQR-controlled system using the ode45 solver
%% ---------------------------------------------------
%% system
function dx = ode(t, x, A, B, K)
u = - K*x;
dx = A*x + B*u;
end
%% call ode45
[t, x] = ode45(@(t, x) ode(t, x, A, B, K), t, x_init);
plot(t, x), grid on, xlabel('t')
legend('x_1', 'x_2', 'x_3', 'x_4', 'x_5', 'x_6', 'x_7', 'x_8', 'x_9', 'x_{10}', 'x_{11}', 'x_{12}')
2 Kommentare
Sam Chak
am 26 Mär. 2025
Hi @Mikail
Since you used my suggested solution in your new post, would you consider clicking 'Accept' ✔ on the Answer to close this topic related to ode45? This will encourage PWM experts to focus on your new question.

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Refinement finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
