trouble using pdepe to solve system of pdes
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Chin Ching
am 9 Feb. 2025
Bearbeitet: Torsten
am 9 Feb. 2025
Hello,
I have to solve the following system of pdes:

The code below uses pdepe to solve it, but it returned the error:
"Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative."
Could anyone help solve the problem?
Thank you in advance!
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = vpa((A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5)));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
u0 = [0;0];
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end
0 Kommentare
Akzeptierte Antwort
Torsten
am 9 Feb. 2025
Bearbeitet: Torsten
am 9 Feb. 2025
Your initial condition for u(2) at x = 0 is not consistent with your boundary condition.
Use
function u0 = icfun(x)
global H cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
instead.
And remove the vpa in the evaluation of csp.
3 Kommentare
Torsten
am 9 Feb. 2025
Bearbeitet: Torsten
am 9 Feb. 2025
For me it works in the current online MATLAB release R2024b. What MATLAB version do you use ?
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20;
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = (A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
u1 = sol1(:,:,1);
u2 = sol1(:,:,2);
plot(tSpan1,u2(:,end))
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
global cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu PDE Solvers finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
