Alternative to ginput for finding curve intersections with unevenly spaced data in MATLAB
    8 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
Is there a better way to determine the intersection of two curves in MATLAB, other than using ginput, especially when the data points are unevenly spaced and do not include the exact intersection point? How can I handle cases where one of my datasets forms two angled lines joined together, rather than a smooth curve?

0 Kommentare
Akzeptierte Antwort
  Matt J
      
      
 am 8 Feb. 2025
        
      Bearbeitet: Matt J
      
      
 am 8 Feb. 2025
  
      Use fminbnd or fzero,
x=sort(rand(1,12)*5);
y1=[0,1,-1*x(3:end)+3+2*x(3)];
y2=2*x-3;
f=@(z)  interp1(x,y1,z)-interp1(x,y2,z)  ;
xmin=fzero(f,[min(x),max(x)]); ymin=interp1(x,y1,xmin); %intersection
h=plot(x,y1,'--gx', x,y2,'--b+',xmin,ymin,'ro'); 
h(3).MarkerFaceColor=h(3).Color; h(3).MarkerSize=8;
Weitere Antworten (2)
  Alan Stevens
      
      
 am 8 Feb. 2025
        Create a function using interp1 for use with fzero.  For example:
 yfn = @(X,Y,x) interp1(X,Y,x);
 X = [1,2,3,7,8,9];
 Y1 = X;
 Y2 = 15-X.^1.5;
x0 = 6;
xp = fzero(@(x0)fn(x0,X,Y1,Y2,yfn),x0);
disp(xp)
yp = yfn(X,Y1,xp);
plot(X,Y1,'-o',X,Y2,'-+',xp,yp,'ks'),grid
xlabel('x'), ylabel('y')
function Z = fn(x,X,Y1,Y2,yfn)
         Z = yfn(X,Y1,x)-yfn(X,Y2,x);
end
0 Kommentare
  Star Strider
      
      
 am 8 Feb. 2025
        
      Bearbeitet: Star Strider
      
      
 am 9 Feb. 2025
  
      Another approach — 
x = [linspace(0, 2.4) linspace(5.2, 7, 8)].'*1E-3;
y1 = [x(x<=2.4E-3)*580/2.4E-3; 500*ones(size(x(x>2.5E-3)))];
y2 = x*580/2.4E-3 - 450;
idx = find(diff(sign(y2 - y1)))
idxrng = max(1,idx) : min(numel(x),idx+1)
y2(idxrng)-y1(idxrng)
xi = interp1((y1(idxrng)-y2(idxrng)), x(idxrng), 0)
yi = interp1(x, y1, xi)
figure
plot(x, y1, '.-', DisplayName="y_1")
hold on
plot(x, y2, '.-', DisplayName="y_2")
plot(xi, yi, 'sr', DisplayName="Intersection")
hold off
grid
legend(Location='best')
This approach finds the approximate index of  the two lines and then interpolates to find the intersection points of the lines.  
EDIT — (9 Feb 2025 at 1:43)
Corrected code.
.
0 Kommentare
Siehe auch
Kategorien
				Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






