Convert Set of (x,y) Coordinates Into Polygon

17 Ansichten (letzte 30 Tage)
Paul Safier
Paul Safier am 29 Jan. 2025
Kommentiert: Paul am 30 Jan. 2025
I converted the attached coordinates (x,y) into an alphashape. See image.
shp = alphaShape(coordinates(:,1),coordinates(:,2),'HoleThreshold',50);
What I need are the coordinates at the polygon vertices (shown in red), and importantly, in the proper order shown with the numbers. I would like to be able to use the polyshape function next...
I have toyed with boundaryfacet, delauney but with no luck.
Any suggestions?
Thanks.

Akzeptierte Antwort

Matt J
Matt J am 30 Jan. 2025
Bearbeitet: Matt J am 30 Jan. 2025
This uses tspsearch from the File Exchange,
load coordinates
shp = alphaShape(coords(:,1),coords(:,2),'HoleThreshold',50);
[bf,P]=boundaryFacets(shp);
p=tspsearch(P,5); P=P(p,:);
pgon1=polyshape(P); pgon2=polyshape(P,Simplify=true);
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
idx= ismember(pgon1.Vertices, pgon2.Vertices,'rows');
V=flipud(pgon1.Vertices(idx,:));
[~,s]=min(sum(V,2)); V=circshift(V,1-s);
V(4,1)=V(3,1); V(5,1)=V(6,1); V([3,6],:)=[]; %Fix bad corners
plot(pgon1,FaceColor='none') ;hold on
scatlabel( scatter(V(:,1),V(:,2)) );hold off
  2 Kommentare
Paul Safier
Paul Safier am 30 Jan. 2025
Hey @Star Strider and @Matt J , these are both really nice solutions! Thank you. Matt, nice use of the TSP! I don't know which one to accept as they're both very appreciated.
Matt J
Matt J am 30 Jan. 2025
Thanks @Paul Safier. You can Accept whichever solution you end up using, and you can upvote the other solutions.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (3)

Star Strider
Star Strider am 30 Jan. 2025
Bearbeitet: Star Strider am 30 Jan. 2025
Try this —
LD = load('coordinates.mat')
LD = struct with fields:
coords: [17650x2 double]
coordinates = LD.coords;
shp = alphaShape(coordinates(:,1),coordinates(:,2),'HoleThreshold',50);
shpx = shp.Points(:,1);
shpy = shp.Points(:,2);
[minx,maxx] = bounds(shpx);
[miny,maxy] = bounds(shpy);
minxv = shpx == minx;
% nnz(minxv)
maxxv = shpx == maxx;
% nnz(maxxv)
minyv = shpy == miny;
% nnz(minyv)
minyidx = find(minyv);
endsidx = find(diff(minyidx) > 151);
corner = minyidx(endsidx:endsidx+1);
midpt = round(mean(corner));
[minmidpty,maxmidpty] = bounds(shpy(midpt+(0:151)));
VertexPoints = table([1; 8; 6; 7; 2; 5; 3; 4], [minx; minx; maxx; maxx; shpx(corner(1)); shpx(corner(2)); shpx(corner(1)); shpx(corner(2))], [miny; maxy; miny; maxy; shpy(corner(1)); shpy(corner(2)); minmidpty; minmidpty], VariableNames=["Corner","X","Y"] );
VertexPoints = sortrows(VertexPoints,1)
VertexPoints = 8x3 table
Corner X Y ______ ______ ______ 1 124.41 25.084 2 173.58 25.084 3 173.58 126.42 4 225.75 126.42 5 225.75 25.084 6 274.92 25.084 7 274.92 175.59 8 124.41 175.59
figure
plot(shp)
hold on
plot(minx, miny, 'rs', MarkerFaceColor='r')
plot(minx, maxy, 'rs', MarkerFaceColor='r')
plot(maxx, miny, 'rs', MarkerFaceColor='r')
plot(maxx, maxy, 'rs', MarkerFaceColor='r')
plot(shpx(corner), shpy(corner), 'rs', MarkerFaceColor='r')
plot(shpx(corner(1)), minmidpty, 'rs', MarkerFaceColor='r')
plot(shpx(corner(2)), minmidpty, 'rs', MarkerFaceColor='r')
hold off
axis([100 300 20 180])
text(VertexPoints{:,2}, VertexPoints{:,3}, compose('%2d',VertexPoints{:,1}), Color='r', FontWeight='bold', Vert='middle', Horiz='left', FontSize=12)
EDIT — Added text call.
.

Walter Roberson
Walter Roberson am 30 Jan. 2025
load coordinates
coordinates = coords;
k = boundary(coordinates);
plot(coordinates(k,1), coordinates(k,2))
  4 Kommentare
Paul Safier
Paul Safier am 30 Jan. 2025
@Matt J agreed, I'm wondering if bypassing the use of alphashape in place of boundary might add some robustness for the case of other shapes. If boundary is more forgiving than alphashape with a less-than-optimal factor, then it might be preferable.
Paul
Paul am 30 Jan. 2025
load coordinates
coordinates = coords;
shp = alphaShape(coordinates(:,1),coordinates(:,2),'HoleThreshold',50);
[bf,P] = boundaryFacets(shp);
pgon = polyshape(P); % KeepCollinearPoints = false by default
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
figure
plot(pgon)
hold on
plot(pgon.Vertices(:,1),pgon.Vertices(:,2),'o') % only 10 points
Not clear to me what the expectations are for handling the "double vertices" on those inner corners, which I think are also there using the boundary() solution shown above.
boundary doesn't have an option to remove colinear points AFAICT, so I suppose one could use boundary() with whatever shrink factor and then covert that result to a polyshape to get rid of colinear points.

Melden Sie sich an, um zu kommentieren.


Catalytic
Catalytic am 30 Jan. 2025
Bearbeitet: Catalytic am 30 Jan. 2025
load coordinates
shp = alphaShape(coords(:,1),coords(:,2),'HoleThreshold',50);
[~,P]=boundaryFacets(shp);
chull=convhull( polyshape(coords));
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
concavity =subtract(chull , polyshape(P));
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
[xlim,ylim]=boundingbox(concavity);
innerV=table2array(combinations(xlim,ylim));
finalPolyshape=subtract( chull , polyshape(innerV([1,2,4,3],:)) );
V=flipud(finalPolyshape.Vertices);
plot(finalPolyshape);
hold on;
scatter(V(:,1),V(:,2),'ro','filled');
scatter(coords(1:2:end,1),coords(1:2:end,2),'.k','SizeData',1)
hold off

Kategorien

Mehr zu Bounding Regions finden Sie in Help Center und File Exchange

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by