G_PI =
Use of symbolix toolbox to derive PI controller Kp,Ki
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jack Daniels
am 17 Jan. 2025
Kommentiert: Star Strider
am 17 Jan. 2025
I'd like try to use Symbolic toolbox to derive closed loop transfer function of control system:


to help design PI controller as of standard 2nd order system compring charasterictic polynomial with that of a standard second order

to get out:

Please advice how to achive it with Symbolic toolbox?
3 Kommentare
Akzeptierte Antwort
Star Strider
am 17 Jan. 2025
You can get there, however you have to force iit —
syms K_P K_I L R s xi omega_0 real
G_PI = (K_P*s + K_I) / s
G_RL = 1 / (L*s + R)
FB = G_PI * G_RL / (1 + G_PI * G_RL)
FB = simplify(FB, 500)
[FBn,FBd] = numden(FB)
LHS = FBd
RHS = s^2 + 2*xi*omega_0*s + omega_0^2
[LHSc,Lsv] = coeffs(LHS,s)
LHSc(1)
LHSc = LHSc / LHSc(1)
[RHSc,Rsv] = coeffs(RHS,s)
K_Psln = isolate(LHSc(2) == RHSc(2), K_P)
K_Isln = isolate(LHSc(3) == RHSc(3), K_I)
.
2 Kommentare
Star Strider
am 17 Jan. 2025
Thank you!
I believe the online version (here) uses its version of the Live Editor. (I don’t usually use the Live Editor in my own projects, although sometimes it’s preferable.)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!













