how to fft2 with dlarray?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
use in neural network training which need to define loss function
the loss function calaulated by the network input and output like this:
loss = mse(I,Y);
Y is the input of the network and I is the parameter which need fft2 through the output of the network
if use the extractdata(), the result can't be used to calculate gradient by
dlgradient(loss, net.Learnables)
in this situation the gradient only equal 0
0 Kommentare
Akzeptierte Antwort
Matt J
am 5 Jan. 2025
Bearbeitet: Matt J
am 6 Jan. 2025
You haven't explained the difficulty you are experiencing, but I assume it is that an fft(), but not an fft2() command is available for dlarrays. However, you can build a 2D FFT out of 1D FFTs. Example:
X1=rand(400); %input to FFT
X2=dlarray(X1);
Y1=fft2(X1);
Y2=fft(fft(X2,[],2),[],1);
percentError = norm(Y1-extractdata(Y2),'inf')/norm(Y1,inf)*100
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!