How to permute the rows and columns in a sparse GPU matrix?
61 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
ANGEL
am 17 Dez. 2024
Kommentiert: ANGEL
am 22 Dez. 2024 um 11:20
How can I permute the elements of a sparse matrix in the GPU? I mean, for a CPU array the command
M=speye(2)
M([2,1],:)
permutes the rows 1 and 2. However for a GPU array
Mg=gpuArray(M)
Mg([2,1],:)
returns the error
Sparse gpuArray matrices only support referencing whole rows or whole columns.
Of course, I can use a permutation matrix:
Mg=gpuArray(M)
P=gpuArray(sparse([0,1;1,0]));
P*Mg
however, the first method is faster in the CPU than the one using a permutation matrix. I would want something analogous in the GPU.
EDIT
Comparison of both methods in CPU with the matrix structured I'm dealing with:
N=10;
lgth = 1/2*(N+1)*(N+2); %size of the matrices
blocks0 = cell(1, N+1);
for k0 = 1:N+1
A = randn(N+2-k0) + 1i * randn(N+2-k0);
H0 = (A + A') / 2;
blocks0{k0} = sparse(H0);
end
% Construct one sparse block diagonal matrix
M0= blkdiag(blocks0{:});
blocks1 = cell(1, N+1);
for k1 = 1:N+1
B = randn(N+2-k1) + 1i * randn(N+2-k1);
H1 = (B + B') / 2;
blocks1{k1} = sparse(H1);
end
% Construct another sparse block diagonal matrix
M1= blkdiag(blocks1{:});
Id = sparse(eye(lgth));
% First Permutation vector
v = [1, cumsum(N+2-(1:N)) + 1];
p = v;
for jj=1:N
p = [p (v(jj)+1):(v(jj+1)-1)];
end
P = Id(p,:);
% Second Permutation vector
p2 = [N+1 1:N];
for jj=2:N
a = v(jj):(v(jj+1)-1);
p2 = [p2 a(end) a(1:end-1)];
end
p2 = [p2 lgth];
P2 = Id(p2,:);
M = sparse(lgth, lgth);
M(1,1) = 1;
%Elapsed time after 200000 repetitions, first method
tic
for m0=1:200000
M0.*M(p2,:) + M1.*M(p,p);
end
toc
%Elapsed time after 200000 repetitions, second method
tic
for m1=1:200000
M0.*(P2*M) + M1.*(P*M*P');
end
toc
Elapsed time is 1.630648 seconds.
Elapsed time is 8.218439 seconds.
6 Kommentare
Mike Croucher
am 18 Dez. 2024 um 13:12
Would you mind showing all your timings please complete with the sparse matrix so we can reproduce it? You say the first method is faster in the CPU but is it faster than the permutation matrix on the GPU?
Akzeptierte Antwort
Matt J
am 18 Dez. 2024 um 23:55
Bearbeitet: Matt J
am 19 Dez. 2024 um 2:42
The permAndRebuild() function below is a reimplementaiton of the row permutation operation M(p,:) that also works on the GPU. On my CPU, I find that it is only slightly slower than doing M(p,:) explicitly, so maybe it is a close enough analog for you to accept as a benchmark on the GPU as well.
Regardless, I find that multiplication with a permutation matrix reigns supreme, both on the CPU and on the GPU (NVIDIA GeForce RTX 4080 SUPER):
N=1e4;
M=sprand(N,N,0.11);
p=randperm(N); %permutation
ip=1:N; ip(p)=ip; %inverse permutation
P=speye(N); P=P(p,:); %permuation - matrix form
isequal(M(p,:), P*M, permAndRebuild(M,ip))
ans =
logical
1
%CPU performance
timeit(@() M(p,:))
ans =
0.4020
timeit(@() P*M)
ans =
0.1508
timeit(@() permAndRebuild(M,ip))
ans =
0.4899
%GPU performance
M=gpuArray(M);
p=gpuArray(p); ip=gpuArray(ip); P=gpuArray(P);
gputimeit(@() P*M)
ans =
0.0212
gputimeit(@() permAndRebuild(M,ip))
ans =
0.0914
function Mperm=permAndRebuild(M,ip)
[I,J,S]=find(M);
Mperm=sparse(ip(I),J,S);
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sparse Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!