Solve Poission equation using Conjugate gradient solver.
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to solve Poisson equation using Conjugate gradient solve.
But the numerical solution does not converge to exact solution....
close all;
N = 100; % points in the each direction
x0 = 0;
xN = 2;
y0 = 0;
yN = 1;
dx = (xN-x0)/N;
dy = (yN-y0)/N;
dx2_dy2 = dx^2 / dy^2;
x = linspace(x0,xN,N+1);
y = linspace(y0,yN,N+1);
[X Y] = meshgrid(x,y);
Q = 5 * pi^2 * sin(pi .*X) .* sin(2*pi.*Y);
Qint = Q(2:N,2:N); % obtain interior
q = Qint(:); % transform into a vector
% True solution
Pd = sin(pi .* X) .* sin(2*pi .*Y);
tol = 1e-5;
Pcg = zeros(N+1, N+1);
x = zeros((N-1)^2, 1);
x_old = x;
err = 1;
iter = 0;
TN = gallery('tridiag', N-1, -1, 2, -1);
A = kron(speye(N-1), TN) + kron(TN, eye(N-1));
A = A / dx^2;
b = reshape(Q(2:N, 2:N), [], 1);
r = b - A * x;
p = r;
tic;
while (err > tol)
iter = iter + 1;
Ap = A * p;
alpha = (r' * r) / (p' * Ap);
x_new = x + alpha * p;
r_new = r - alpha * Ap;
residual_norm = norm(r_new);
err = norm(x_new - x)
if err < tol
break;
end
beta = (r_new' * r_new) / (r' * r);
p = r_new + beta * p;
r = r_new;
x = x_new;
end
toc;
Pcg(2:N, 2:N) = reshape(x, N-1, N-1);
cg_iter = iter
% Filled Contour Plots
figure(1);
% Numerical Solution Pj
contourf(X, Y, Pcg, 20, 'LineStyle', 'none');
colorbar;
title('Numerical Solution (Pcg)');
xlabel('x');
ylabel('y');
% error Solution Pj - Pd
figure(2);
contourf(X, Y, Pcg - Pd, 20, 'LineStyle', 'none');
title('Error (Pcg)');
xlabel('x');
ylabel('y');
colorbar
1 Kommentar
Torsten
am 10 Dez. 2024
Your matrix A is only suited for an equidistant grid in both directions (x and y).
In your case, it has to be modified because dx = 2*dy.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Eigenvalue Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

