having problem plotting ramp function
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen

the line f(0001:3000)=((f0/3)*dt);
was supposed to maek the f(t) plot having a ramp function of f0/3 * time when time is at 0~3
I tried f(0001:3000)=((f0/3)*time) and it got an error which says "Unable to perform assignment because the left and right sides have a different number of elements."
please help
5 Kommentare
VBBV
am 2 Dez. 2024
Bearbeitet: VBBV
am 3 Dez. 2024
@Tien Yin You can modify the present code as below. A better way to do is to use piecewise function as mentioned by @Sam Chak
clc
clearvars
m=5;
k=18;
c=1.2;
f0=100;
wn=sqrt(k/m);
cc=2*m*wn;
Dr=c/cc;
wd=wn*sqrt(1-Dr^2);
time=linspace(0,10,5001);
idx1 = find(time==3); %
idx2 = find(time==5); % use find
f=zeros(1,length(time));
for kx = 1:numel(time)-1
if kx <= idx1
f(kx+1)=f(kx) + (f0/3)*(time(kx+1)-time(kx));
elseif kx>idx1 & kx<=idx2
f(kx+1) = 100;
else
f(kx+1) = 0;
end
end
figure;
plot(time,f);xlabel('t(s)'); ylabel('f(t)')
xticks(1:1:10);grid
axis([0 10 0 110])
Akzeptierte Antwort
Shivam
am 2 Dez. 2024
Hi Yin,
You can use the below script to get the desired figures.
m = 5;
k = 18;
c = 1.2;
f0 = 100;
wn = sqrt(k/m);
cc = 2*m*wn;
Dr = c/cc;
wd = wn*sqrt(1-Dr^2);
dt = 0.01; % assumed dt
time = 0:dt:10;
f = zeros(1, length(time));
f(1:round(3/dt)) = (f0/3) * (0:dt:3-dt); % Linear increase from 0 to 3 seconds
f(round(3/dt)+1:round(5/dt)) = f0; % Constant from 3 to 5 seconds
% f remains 0 after 5 seconds
g = (1/(m*wd))*exp(-Dr*wn*time).*sin(wd*time);
x = conv(f, g)*dt;
x = x(1:length(time)); % Ensure x is the same length as time
figure;
subplot(221); plot(time, f, 'r'); xlabel('t(s)'); ylabel('f(t)');
subplot(222); plot(time, g); xlabel('t(s)'); ylabel('g(t)');
subplot(223); plot(time, x); xlabel('t(s)'); ylabel('位移(m)');
Hope it helps.
Weitere Antworten (1)
Sam Chak
am 2 Dez. 2024
Hi @Tien Yin
The signal in the image is a piecewise function that consists of three sub-functions defined over different intervals:
,
,
. You can apply the piecewise() function from the Symbolic Math Toolbox, or you can use the MATLAB indexing approach (though this method may not be suitable for publication in a journal).
Alternatively, you can use a direct math formula to combine the sub-functions into a one-line equation, as shown below. Since the second and third sub-functions can be described using a Heaviside function, this effectively reduces the representation to "two" sub-functions.
If you are interested, you can find another example here:

t = linspace(0, 10, 1001);
t1 = 3;
t2 = 5;
% Functions at subintervals
f1 = 100/3*t; % y1, Ramp function at t < t1
f2 = 100*heaviside(t2 - t); % y2, Heaviside function at t > t1
% Applying the Piecewise Function Put Together (PFPT) formula
f = f1 + (f2 - f1).*heaviside(t - t1);
% Plot
plot(t, f, 'linewidth', 1.5), grid on, ylim([-50, 150])
title('Piecewise Function')
xlabel('t')
ylabel('f(t)')
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


