How to plot this kind of figure?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Gaétan Andriano
am 20 Nov. 2024
Kommentiert: Gaétan Andriano
am 21 Nov. 2024
Hello,
I would like to reproduce these figures that I found in a scientific article. They are just below.
The values to generate the waves are not important for me, it's just an illustration.
0 Kommentare
Akzeptierte Antwort
Umeshraja
am 21 Nov. 2024
I understand that you're looking to illustrate wavelets between two lines that pass through the origin. The goal is to determine the lengths of the long and short wavelets and plot their shifted versions. Below is a sample script that demonstrates how to draw a Morlet wavelet between lines with slopes of 5 and 1, and how to shift these wavelets to y = 4 and y = 6.
close all;
% Define the slopes of the two lines
slope1 = 5;
slope2 = 1;
% Define a range for the x-values in the first quadrant (positive values)
x = 0:0.01:10;
% Calculate the corresponding y-values for each line
y1 = slope1 * x;
y2 = slope2 * x;
% Calculate the x-values where the lines intersect y = 4 and y = 6
xs1 = 4 / slope1;
xs2 = 4 / slope2;
WaveletLengthShort=xs2-xs1;
xl1 = 6 / slope1;
xl2 = 6 / slope2;
WaveletLengthLong=xl2-xl1;
w0 = 2;
t=-3:0.01:9 ;
t_long = -WaveletLengthLong*0.5:0.01:WaveletLengthLong*0.5;
sigma1 = 0.75; % Standard deviation of the Gaussian window
% Morlet Wavelet (Real part only)
morlet_wavelet = (pi^(-0.25)) * exp(2i * pi * w0 * t_long) .* exp(-t_long.^2 / (2 * sigma1^2));
t_shifted1 = t_long +WaveletLengthLong*0.5+xl1;
y_shifted1 = 6 * ones(size(t));
indices1 = (t >= min(t_shifted1) & t <= max(t_shifted1) );
y_shifted1(indices1) = y_shifted1(indices1) + (morlet_wavelet);
% Create a shorter second wavelet
t_short = -WaveletLengthShort*0.5:0.01:WaveletLengthShort*0.5; % Shorter time vector
sigma2=0.5;
morlet_wavelet_short = 0.8*(pi^(-0.25)) * exp(2i * pi * w0 * t_short) .* exp(-t_short.^2 / (2 * sigma2^2));
% Shift the second wavelet to the right by 1 unit and plot at y = 1
t_shifted2 = t_short + WaveletLengthShort*0.5+xs1;
y_shifted2 = 4 * ones(size(t));
% Find indices in the original time vector that match the shifted short wavelet
indices2 = (t >= min(t_shifted2) & t <= max(t_shifted2));
y_shifted2(indices2) = y_shifted2(indices2) + (morlet_wavelet_short);
figure;
plot(x, y1, 'k');
hold on;
plot(x, y2, 'k');
plot(t, real(y_shifted1), 'b');
plot(t, real(y_shifted2), 'r');
hold off;
ylim([0 8])
xlim([0 8])
Adjust any parameters as needed to fit your specific requirements.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Continuous Wavelet Transforms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!