How can I evaluate the transition matrix using the fourth order Runge-Kutta ODEs
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a two-degree-of-freedom system. for solving the system I am trying to use RK4. Can anyone help me with correctly writing the transition matrix in my matlab code according to the definition in this reference?

% Time settings
t0 = 0;
tf = pi / omega_rad_s^2;
N = 100;
ts = (tf - t0) / N;
t = linspace(t0, tf, N+1);
%Initial condition
y01 = 1;
y02 = 0;
y03 = 0;
y04 = 0;
y = [y01; y02; y03; y04]; % IC vector
% Solve the system using RK4
for i = 1:N
k1 = Function_system(t(i), y(:, i));
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
k3 = Function_system(t(i) + ts/2, y(:, i) + ((sqrt(2)-1)/2) * ts * k1 + (1 - (1/sqrt(2))) * ts * k2);
k4 = Function_system(t(i) + ts, y(:, i) - (1/sqrt(2)) * ts * k2 + (1 + 1/sqrt(2)) * ts * k3);
y(:, i+1) = y(:, i) + ts/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
end
2 Kommentare
Antworten (2)
Torsten
am 13 Nov. 2024
Bearbeitet: Torsten
am 13 Nov. 2024
Seems to work. What's your problem ?
Don't use the transition matrix to integrate in one pass. If you have to, generate it with symbolic inputs to "Function_system".
% Time settings
t0 = 0;
tf = 3;
N = 100;
ts = (tf - t0) / N;
t = linspace(t0, tf, N+1);
%Initial condition
y01 = 1;
y02 = 1;
y03 = 1;
y04 = 1;
y = [y01; y02; y03; y04]; % IC vector
% Solve the system using RK4
for i = 1:N
k1 = Function_system(t(i), y(:, i));
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
k3 = Function_system(t(i) + ts/2, y(:, i) + ((sqrt(2)-1)/2) * ts * k1 + (1 - (1/sqrt(2))) * ts * k2);
k4 = Function_system(t(i) + ts, y(:, i) - (1/sqrt(2)) * ts * k2 + (1 + 1/sqrt(2)) * ts * k3);
y(:, i+1) = y(:, i) + ts/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
end
plot(t,y(3,:))
function dydt = Function_system(t,y)
dydt = [-y(1),-2*y(2),y(3),2*y(4)].';
end
13 Kommentare
Torsten
am 18 Nov. 2024
Bearbeitet: Torsten
am 18 Nov. 2024
I thought that ODE45 might be a suitable function, but after doing some research, I think using RK4 might give me more accurate results.
No, but how to find the numerical transition matrix for "ODE45" ? Do you know how to compute K for the scheme implemented in "ODE45" ?
Torsten
am 22 Nov. 2024
Bearbeitet: Torsten
am 22 Nov. 2024
If it's still of interest: this code seems to work correctly. I don't know why using
n = size(A,1);
E = A(t+dt/2)*(eye(n)+dt/2*A(t));
F = A(t+dt/2)*(eye(n)+(-1/2+1/sym(sqrt(2)))*dt*A(t)+(1-1/sym(sqrt(2)))*dt*E);
G = A(t+dt)*(eye(n)-dt/sym(sqrt(2))*E+(1+1/sym(sqrt(2)))*dt*F);
K = eye(n)+dt/6*(A(t)+2*(1-1/sym(sqrt(2)))*E+2*(1+1/sym(sqrt(2)))*F+G);
gives wrong results.
format long
syms y [4 1]
syms t dt
ct = cos(2*t);
st = sin(2*t);
% Define inertia matrix [M]
M11 = 3 + 1 + ct;
M12 = -st;
M21 = -st;
M22 = 3 + 1 - ct;
M = [M11 M12;M21 M22];
Minv = inv(M);
% Define damping matrix [D]
D11 = (1 - ct) - (1 + ct) - 2 * st;
D12 = st + 0.4*st - 2*(1 + ct) - 2*ct;
D21 = st + 0.4*st + 2*(1 - ct) - 2*ct;
D22 = (1 + ct) - (1 - ct) + 2 * st;
D = [D11 D12; D21 D22];
% Define stiffness matrix [K]
K11 = - (1 - ct) + st;
K12 = -st + 0.5*(1 + ct);
K21 = -st - 0.5*(1 - ct);
K22 = - (1 + ct) - st;
K = [K11 K12; K21 K22];
% Calculate the inverse matrix-vector product and assign correctly
acceleration = -Minv * (D * [y(2); y(4)] + K * [y(1); y(3)]);
% System equations
dy_dt = [y(2) ; acceleration(1); y(4); acceleration(2)] ;
b = zeros(4,1);
vars = y;
[A(t),~] = equationsToMatrix(dy_dt==b,vars);
% Compute transition matrix K
Function_system = @(t,y)A(t)*y;
k1 = Function_system(t, y);
k2 = Function_system(t + dt/2, y + dt/2 * k1);
k3 = Function_system(t + dt/2, y + ((sqrt(2)-1)/2) * dt * k1 + (1 - (1/sqrt(2))) * dt * k2);
k4 = Function_system(t + dt, y - (1/sqrt(2)) * dt * k2 + (1 + 1/sqrt(2)) * dt * k3);
ynew = y + dt/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
b = zeros(4,1);
vars = y;
[K,~] = equationsToMatrix(ynew==b,vars);
% Compute numerical solution for tend = pi and y0 = [1;1;1;1] using the
% transition matrix K
t0 = 0;
tf = pi ;
N = 20;
ts = (tf - t0) / N;
T = linspace(t0, tf, N+1);
K = subs(K,dt,ts);
Knum = double(subs(K,t,0));
for i = 1:N-1
Knum = double(subs(K,t,i*ts))*Knum;
end
y_at_pi_with_transition_matrix = Knum*[1;1;1;1]
% Compute eigenvalues
eig(Knum)
% Compute numerical solution for tend = pi and y0 = [1;1;1;1] with ode45 to check the
% result with transition matrix
fun = @(t,y)double(A(t))*y;
y0 = [1;1;1;1];
[T,Y] = ode45(fun,[0 pi],y0);
y_at_pi_with_ode45 = Y(end,:).'
6 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


