How to calculate error in trend?

9 Ansichten (letzte 30 Tage)
SONI SONI
SONI SONI am 12 Mai 2015
Kommentiert: Star Strider am 13 Mai 2015
I have estimated slope from least square method. Now I need to calculate error of this slope at 95% confidence interval. kindly suggest me a MATLAB code in this regard. I'll be thankful remaining you.
  1 Kommentar
Brendan Hamm
Brendan Hamm am 12 Mai 2015
Bearbeitet: Brendan Hamm am 12 Mai 2015
Are you using the fitlm function in the Statistics and Machine Learning Toolbox or polyfit/ polyval? Please provide an example of what you have done, so that it is easier to help you.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Star Strider
Star Strider am 12 Mai 2015
If you used polyfit, I strongly recommend polyparci!
If you used another method, you need to specify the function or other code you used. It is not possible to answer your Question otherwise.
  4 Kommentare
SONI SONI
SONI SONI am 13 Mai 2015
Yes you are right 'regls_E' returns slope value of time series and 'stats_E' returns p-value of this slope value. I need to calculate error value of this slope value. How would I coding in order to get error value ?
Star Strider
Star Strider am 13 Mai 2015
Unfortunately, regress is not going to give you the covariance matrix, and you need it to compute the standard errors. I would use fitlm instead, since it will give you the output you want.
If you must use regress, you can calculate the standard errors as:
x = randi(10, 10, 1); % Create Data
y = randi(100, 10, 1); % Create Data
X = [ones(10,1) x]; % Design Matrix
[b,bint,r,rint,stats] = regress(y,X); % Estimate Parameters
rvar = r'*r/(size(X,1)-length(b)); % Residual Variance
covb = rvar./(X'*X); % Covariance Matrix
SE = sqrt(diag(covb)); % Standard Errors
That would be the same for the ‘covb’ field of the ‘stats’ structure returned by robustfit.

Melden Sie sich an, um zu kommentieren.

Tags

Noch keine Tags eingegeben.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by