KS TEST fails at 0.05 but passes at 0.01
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Muhammad Abdullah
am 15 Okt. 2024
Kommentiert: the cyclist
am 17 Okt. 2024
Hello, I need some help in verifying the KSTEST method, which i implemented in the code. I have attached the data file and compared the theoretical CDF with ECDF using beta distribution. the KSTEST fails at 95% of significance while it passes at 99% (tight range). Can any one please check whether my method of implementing KS test is correct or wrong? and if my way interpretation is wrong then?
R = load('R.txt')
figure
h1 = histogram(R(1:end),20,'Normalization','cdf');
[f,x] = ecdf(R);
pd_12 = betacdf(x,a_mle,b_mle); % theoretical
[h2,p,ksstat] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.01)
J = plot(x,pd_12,'b','Linewidth',2); grid on;
hold on
plot(x,f,'LineStyle', '-', 'Color', 'r','Linewidth',2)
legend('Histogram of data','Theoretical Beta CDF','ECDF of data','Location','best')
2 Kommentare
the cyclist
am 15 Okt. 2024
Bearbeitet: the cyclist
am 15 Okt. 2024
We need a_mle and b_mle to test your code. Is it the coefficients from
betafit(R)
?
Akzeptierte Antwort
the cyclist
am 15 Okt. 2024
R = load('R.txt');
coeff = betafit(R);
a_mle = coeff(1);
b_mle = coeff(2);
[~,x] = ecdf(R);
pd_12 = betacdf(x,a_mle,b_mle); % theoretical
[h_05,p_05,ksstat_05] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.05)
[h_01,p_01,ksstat_01] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.01)
It is unclear to me what you mean by "pass" and "fail" the test, or by "tight range".
The P-value of the K-S test is equal to 0.0142. Therefore,
- if alpha is 0.05, the null hypothesis is rejected (h=1)
- if alpha is 0.01, the null hypothesis is not rejected (h=0)
So, I guess you were interpreting the output incorrectly?
7 Kommentare
the cyclist
am 17 Okt. 2024
It's a strange way to think about it. If you exclude elements that would have been expected from random draws from those distributions, then it makes the null distributions less likely to be accepted.
That being said, if you want to limit R to only those values smaller than R_threshold, then
R_limited = R(R < R_threshold)
is that set of values.
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!