Why does the value of tolerance stop at n=2 (third value of the iteration) within the while loop?
36 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Asher
am 18 Sep. 2024 um 12:11
Kommentiert: Star Strider
am 18 Sep. 2024 um 13:32
I am using a while loop to determine the taylor expansion of cos(x), I am trying to work out how many iterations (with the result of each iteration) it takes to reach the tolerance value (tol) for a given value of x (in this case sin(pi/5)) and tolerance of exp(-7).
When I run the for loop, I get 3 values output (n=0,1,2) but not a third value, as the answer for e suggests that I should get to n=3, yet my code seems to stop as soon as I reach n=2. However, the output value is still greater than the allowed tolerance, so I am unsure why the while loop does not complete another iteration (to be within the tolerance value).
clear;clc;
tol = exp(-7);
x = sin(pi/5);
target = cos(x);
counter = 1;
n(counter) = 0;
result(counter) = (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
while abs(result(counter)-target) > tol
counter = counter + 1;
n(counter) = n(counter-1) + 1;
result(counter) = result(counter-1) + (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))))
end
1 Kommentar
Aquatris
am 18 Sep. 2024 um 12:39
The output value is not greater than the allowed tolerance since the difference between result(counter) and target becomes less than the tol.
Can you explain what you mean by "as the answer for e suggests that I should get to n=3"?
clear;clc;
tol = exp(-7);
x = sin(pi/5);
target = cos(x);
counter = 1;
n(counter) = 0;
result(counter) = (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
while abs(result(counter)-target) > tol
counter = counter + 1;
n(counter) = n(counter-1) + 1;
result(counter) = result(counter-1) + (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
end
n
[result(end) target]
abs(result(end)-target)<tol
Akzeptierte Antwort
Star Strider
am 18 Sep. 2024 um 12:40
The loop appears to be working correctly.
Adding ‘Check_Convergence’ and examiining the results demonstrates this —
clear;clc;
tol = exp(-7)
x = sin(pi/5);
target = cos(x)
counter = 1;
n(counter) = 0;
result(counter) = (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
while abs(result(counter)-target) > tol
counter = counter + 1;
n(counter) = n(counter-1) + 1
result(counter) = result(counter-1) + (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))))
Check_Convergence = abs(result(counter)-target)
end
The calculation meets the criterion after the second iteration, and the loop then stops.
.
2 Kommentare
Weitere Antworten (1)
Torsten
am 18 Sep. 2024 um 12:34
Verschoben: Torsten
am 18 Sep. 2024 um 12:38
Maybe you mean
tol = 1e-7
instead of
tol = exp(-7)
?
However: It's correct that MATLAB quits the while-loop after three values:
tol = exp(-7)
x = sin(pi/5);
target = cos(x);
counter = 1;
n(counter) = 0;
result(counter) = (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
while abs(result(counter)-target) > tol
counter = counter + 1;
n(counter) = n(counter-1) + 1;
result(counter) = result(counter-1) + (((-1)^n(counter)) * (x^(2*n(counter)))/(factorial(2*n(counter))));
end
abs(result(counter)-target)
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!