Newton Forward difference method
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
forward_diff(i, j) = forward_diff(i+1, j-1) - forward_diff(i, j-1);
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
term = forward_diff(1, j);
for i = 1:j
term = term * (X - x(i));
end
P = P + term / factorial(j);
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
Result Newton Forward Difference Polynomial: - (725*X^7)/1008 + (1651*X^6)/80 - (173233*X^5)/720 + (70651*X^4)/48 - (91321*X^3)/18 + (146407*X^2)/15 - (1996741*X)/210 + 3658
The problem now is that when I substitute each value of x, I don't get the corresponding value of y as stated in the table. I need help on how to get the correct polynomial equation.
0 Kommentare
Akzeptierte Antwort
Torsten
am 15 Sep. 2024
Bearbeitet: Torsten
am 15 Sep. 2024
Three coding errors:
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
%forward_diff(i, j) = (forward_diff(i+1, j-1) - forward_diff(i, j-1))
forward_diff(i, j) = (forward_diff(i+1, j-1) - forward_diff(i, j-1)) / (x(i+j-1) - x(i));
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
%term = forward_diff(1, j);
term = forward_diff(1, j+1);
for i = 1:j
term = term * (X - x(i));
end
%P = P + term / factorial(j);
P = P + term;
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
double(subs(P,X,x))
For all data series with deltax = 1 (as the one above), there is one error in your code. But note that this is a special case and the above code holds for arbitrary deltax.
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
forward_diff(i, j) = forward_diff(i+1, j-1) - forward_diff(i, j-1);
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
%term = forward_diff(1, j);
term = forward_diff(1, j+1);
for i = 1:j
term = term * (X - x(i));
end
P = P + term / factorial(j);
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
double(subs(P,X,x))
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Number Theory finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!