vpasolve giving incorrect answers for a system of trigonometric equations. How do I set bounds to the solution?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I'm trying to use vpasolve to solve a system of trigonomic equations. Known variables are Sa1, Sa2, and Sa3. Unknown variables are S, AR, PHI. The code hasn't been giving me the correct results and I can't figure out why. Would assigning boundaries to the solution help? If so, can someone give me an example of how it would work? I assigned fake values for the unknown variables, so I could calculate known variable values to test. %locations of observation points x1 = -9.72; y1 = -5.62; %OBS4 x2 = -4.95; y2 = -5.60; %OBS5 x3 = 6.63; y3 = -3.76; %OBS6 %assign fake values to unknown variables S = 3.4e-5; AR = 10; PHI = 36; %interim variables W1 = ((-x1*sind(PHI) + y1*cosd(PHI)) / (y1*sind(PHI) + x1*cosd(PHI))); W2 = ((-x2*sind(PHI) + y2*cosd(PHI)) / (y2*sind(PHI) + x2*cosd(PHI))); W3 = ((-x3*sind(PHI) + y3*cosd(PHI)) / (y3*sind(PHI) + x3*cosd(PHI))); %calculate known variable values to test Sa1 = S*(sqrt(AR^-1)*(cosd(W1))^2+sqrt(AR)*(sind(W1))^2) Sa2 = S*(sqrt(AR^-1)*(cosd(W2))^2+sqrt(AR)*(sind(W2))^2) Sa3 = S*(sqrt(AR^-1)*(cosd(W3))^2+sqrt(AR)*(sind(W3))^2) The above returns Sa1 = 1.0752e-05, Sa2 = 1.0753e-05, and Sa3 = 1.0894e-05. Having created known variable values with my fake unknown variable values, I'm not able to return the numbers I assigned. The code below is what I'm trying to use in my project. syms S AR PHI %locations of observation points x1 = -9.72; y1 = -5.62; %OBS4 x2 = -4.95; y2 = -5.60; %OBS5 x3 = 6.63; y3 = -3.76; %OBS6 %values for known variables Sa1 = 1.0752e-05; Sa2 = 1.0753e-05; Sa3 = 1.0894e-05; %interim variables W1 = ((-x1*sind(PHI) + y1*cosd(PHI)) / (y1*sind(PHI) + x1*cosd(PHI))); W2 = ((-x2*sind(PHI) + y2*cosd(PHI)) / (y2*sind(PHI) + x2*cosd(PHI))); W3 = ((-x3*sind(PHI) + y3*cosd(PHI)) / (y3*sind(PHI) + x3*cosd(PHI))); %define system of equations and solve EQN = [Sa1 == S*(sqrt(AR^-1)*(cosd(W1))^2+sqrt(AR)*(sind(W1))^2), ... Sa2 == S*(sqrt(AR^-1)*(cosd(W2))^2+sqrt(AR)*(sind(W2))^2), ... Sa3 == S*(sqrt(AR^-1)*(cosd(W3))^2+sqrt(AR)*(sind(W3))^2)]; [S,AR,PHI] = vpasolve(EQN) The above code returns nonsense. Why? I've tried implementing initial parameter guessing to help the solver along, but that doesn't work either, it just returns empty values. This was my attempt: %try alternative definition of equations and set initial parameter guesses EQN1 = Sa1 == S*(sqrt(AR^-1)*(cosd(W1))^2 + sqrt(AR)*(sind(W1))^2); EQN2 = Sa2 == S*(sqrt(AR^-1)*(cosd(W2))^2 + sqrt(AR)*(sind(W2))^2); EQN3 = Sa3 == S*(sqrt(AR^-1)*(cosd(W3))^2 + sqrt(AR)*(sind(W3))^2);
[sol_S, sol_AR, sol_PHI] = vpasolve([EQN1 EQN2 EQN3], [S AR PHI], [1e-5; 10; 50])
0 Kommentare
Akzeptierte Antwort
Paul
am 15 Sep. 2024
Hi Nat,
I didn't try to analyze the equations to be solved, but they appear to be very sensitive to the actual values of Sa1, Sa2, and Sa3. The assignment of values to those variables loses several digits of precision. The code below does not do the assignment, so the LHS of EQN keeps the full precision that can be retained for symbolic constants after converting from double.
%locations of observation points
x1 = -9.72; y1 = -5.62; %OBS4
x2 = -4.95; y2 = -5.60; %OBS5
x3 = 6.63; y3 = -3.76; %OBS6
%assign fake values to unknown variables
S = 3.4e-5; AR = 10; PHI = 36;
%interim variables
W1 = ((-x1*sind(PHI) + y1*cosd(PHI)) / (y1*sind(PHI) + x1*cosd(PHI)));
W2 = ((-x2*sind(PHI) + y2*cosd(PHI)) / (y2*sind(PHI) + x2*cosd(PHI)));
W3 = ((-x3*sind(PHI) + y3*cosd(PHI)) / (y3*sind(PHI) + x3*cosd(PHI)));
%calculate known variable values to test
Sa1 = S*(sqrt(AR^-1)*(cosd(W1))^2+sqrt(AR)*(sind(W1))^2)
Sa2 = S*(sqrt(AR^-1)*(cosd(W2))^2+sqrt(AR)*(sind(W2))^2)
Sa3 = S*(sqrt(AR^-1)*(cosd(W3))^2+sqrt(AR)*(sind(W3))^2)
syms S AR PHI
%locations of observation points
x1 = -9.72; y1 = -5.62; %OBS4
x2 = -4.95; y2 = -5.60; %OBS5
x3 = 6.63; y3 = -3.76; %OBS6
%values for known variables, just keep the full precision values solved above.
%Sa1 = 1.0752e-05;
%Sa2 = 1.0753e-05;
%Sa3 = 1.0894e-05;
%interim variables
W1 = ((-x1*sind(PHI) + y1*cosd(PHI)) / (y1*sind(PHI) + x1*cosd(PHI)));
W2 = ((-x2*sind(PHI) + y2*cosd(PHI)) / (y2*sind(PHI) + x2*cosd(PHI)));
W3 = ((-x3*sind(PHI) + y3*cosd(PHI)) / (y3*sind(PHI) + x3*cosd(PHI)));
%define system of equations and solve
EQN = [Sa1 == S*(sqrt(AR^-1)*(cosd(W1))^2+sqrt(AR)*(sind(W1))^2), ...
Sa2 == S*(sqrt(AR^-1)*(cosd(W2))^2+sqrt(AR)*(sind(W2))^2), ...
Sa3 == S*(sqrt(AR^-1)*(cosd(W3))^2+sqrt(AR)*(sind(W3))^2)];
symvar(EQN)
sol = vpasolve(EQN)
What's confusing to me is that specifying the variables in a different order yields a different result. I don't know why that happens.
sol = vpasolve(EQN,[S,AR,PHI])
Specifying the initial search range yields the expected result.
sol = vpasolve(EQN,[S,AR,PHI],[0 1;0 90;0 90])
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!